精選因式分解教案(通用10篇)
作為一名教學工作者,時常會需要準備好教案,編寫教案助于積累教學經驗,不斷提高教學質量。那要怎么寫好教案呢?下面是小編為大家整理的因式分解教案,希望能夠幫助到大家。
因式分解教案 篇1
【教學目標】
1、了解因式分解的概念和意義;
2、認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。
【教學重點、難點】
重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。
【教學過程】
㈠、情境導入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
㈡、探究新知
1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)
3、類比小學學過的因數分解概念,得出因式分解概念。(學生概括,老師補充。)
板書課題:§6.1 因式分解
因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進一步
1、讓學生繼續觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯系與區別?
2、因式分解與整式乘法的關系:
因式分解
結合:a2-b2 (a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。
結論:因式分解與整式乘法的相互關系——相反變形。
㈣、鞏固新知
1、 下列代數式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。
㈤、應用解釋
例 檢驗下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。
練習,計算下列各題,并說明你的算法:(請學生板演)
(1)872+87×13
(2)1012-992
㈥、思維拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機動題:(填空)x2-8x+m=(x-4)( ),且m=
㈦、課堂回顧
今天這節課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。
㈧、布置作業
作業本(1) ,一課一練
(九)教學反思:
因式分解教案 篇2
教學目標:
1.會進行整式加減的運算,并能說明其中的算理,發展有條理的思考及其語言表達能力。
2.通過探索規律的問題,進一步符號表示的意義,發展符號感,發展推理能力。
教學重點:整式加減的運算。
教學難點:探索規律的猜想。
教學方法:嘗試練習法,討論法,歸納法。
教學用具:投影儀
教學過程:
I探索練習:
擺第1個“小屋子”需要5枚棋子,擺第2個需要 枚棋子,擺第3個需要 枚棋子。按照這樣的方式繼續擺下去。
(1)擺第10個這樣的“小屋子”需要 枚棋子
(2)擺第n個這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問題嗎?小組討論。
二、例題講解:
三、鞏固練習:
1、計算:
(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,計算:(1)B-A (2)A-3B
3、列方程解應用題:三角形三個內角的和等于180°,如果三角形中第一個角等于第二個角的3倍,而第三個角比第二個角大15°,那么
(1)第一個角是多少度?
(2)其他兩個角各是多少度?
四、提高練習:
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?
2、設A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
(y+3)2=0,且B-2A=a,求A的值。
3、已知有理數a、b、c在數軸上(0為數軸原點)的對應點如圖:
試化簡:│a│-│a+b│+│c-a│+│b+c│
小 結:要善于在圖形變化中發現規律,能熟練的對整式加減進行運算。
作 業:課本P14習題1.3:1(2)、(3)、(6),2。
因式分解教案 篇3
教學目標:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應用;能利用平方差公式法解決實際問題。
2、經歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯系。
3、通過對公式的探究,深刻理解公式的應用,并會熟練應用公式解決問題。
4、通過探究平方差公式特點,學生根據公式自己取值設計問題,并根據公式自己解決問題的過程,讓學生獲得成功的體驗,培養合作交流意識。
教學重點:
應用平方差公式分解因式.
教學難點:
靈活應用公式和提公因式法分解因式,并理解因式分解的要求.
教學過程:
一、復習準備 導入新課
1、什么是因式分解?判斷下列變形過程,哪個是因式分解?
①(x+2)(x-2)= ②
③
2、我們已經學過的因式分解的方法有什么?將下列多項式分解因式。
x2+2x
a2b-ab
3、根據乘法公式進行計算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 學習新知
(一) 猜一猜:你能將下面的多項式分解因式嗎?
(1)= (2)= (3)=
(二)想一想,議一議: 觀察下面的公式:
=(a+b)(a—b)(
這個公式左邊的多項式有什么特征:_____________________________________
公式右邊是__________________________________________________________
這個公式你能用語言來描述嗎? _______________________________________
(三)練一練:
1、下列多項式能否用平方差公式來分解因式?為什么?
① ② ③ ④
2、你能把下列的數或式寫成冪的形式嗎?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
(四)做一做:
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)試一試:
例4 下面的式子你能用什么方法來分解因式呢?請你試一試。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某學校有一個邊長為85米的正方形場地,現在場地的四個角分別建一個邊長為5米的正方形花壇,問場地還剩余多大面積供學生課間活動使用?
因式分解教案 篇4
學習目標
1、了解因式分解的意義以及它與正式乘法的關系。
2、能確定多項式各項的公因式,會用提公因式法分解因式。
學習重點:能用提公因式法分解因式。
學習難點:確定因式的公因式。
學習關鍵,在確定多項式各項公因式時,應抓住各項的公因式來提公因式。
學習過程
一.知識回顧
1、計算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主學習
1、閱讀課文P72-73的內容,并回答問題:
(1)知識點一:把一個多項式化為幾個整式的__________的形式叫做____________,也叫做把這個多項式__________。
(2)、知識點二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我們來分析一下多項式ma+mb+mc的特點;它的每一項都含有一個相同的因式m,m叫做各項的_________。如果把這個_________提到括號外面,這樣
ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。
2、練一練。P73練習第1題。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。
3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、準確地確定公因式時提公因式法分解因式的關鍵,確定公因式可分兩步進行:
(1)確定公因式的數字因數,當各項系數都是整數時,他們的最大公約數就是公因式的數字因數。
例如:8a2b-72abc公因式的數字因數為8。
(2)確定公因式的字母及其指數,公因式的字母應是多項式各項都含有的字母,其指數取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(________)
(2)-4a2b+8ab-4b分解因式為__________________
(3)分解因式4x2+12x3+4x=__________________
(4)__________________=-2a(a-2b+3c)
2、P73練習第2題和第3題
五、達標測試。
1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.課本P77習題8.5第1題
學習反思
因式分解教案 篇5
一、教學目標
【知識與技能】
了解運用公式法分解因式的意義,會用平方差分解因式;知道提公因式法分解因式是首先考慮的方法,再考慮用平方差分解因式。
【過程與方法】
通過對平方差特點的辨析,培養觀察、分析能力,訓練對平方差公式的應用能力。
【情感態度價值觀】
在逆用乘法公式的過程中,培養逆向思維能力,在分解因式時了解換元的思想方法。
二、教學重難點
【教學重點】
運用平方差公式分解因式。
【教學難點】
靈活運用公式法或已經學過的提公因式法分解因式;正確判斷因式分解的徹底性。
三、教學過程
(一)引入新課
我們學習了因式分解的定義,還學習了提公因式法分解因式。如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,大家知道因式分解與多項式乘法是互逆關系,能否利用這種關系找到新的因式分解的方法呢?
大家先觀察下列式子:
(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=
他們有什么共同的特點?你可以得出什么結論?
(二)探索新知
學生獨立思考或者與同桌討論。
引導學生得出:①有兩項組成,②兩項的符號相反,③兩項都可以寫成數或式的平方的形式。
提問1:能否用語言以及數學公式將其特征表述出來?
因式分解教案 篇6
教學目標:
1、進一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當的方法進行因式分解
4、應用因式分解來解決一些實際問題
5、體驗應用知識解決問題的樂趣
教學重點:
靈活運用因式分解解決問題
教學難點:
靈活運用恰當的因式分解的方法,拓展練習2、3
教學過程:
一、創設情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)
(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法
(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解
(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解
(7).2πR+2πr=2π(R+r)因式分解
2、.規律總結(教師講解):分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點:(1).分解的對象必須是多項式.
(2).分解的結果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法
公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓練
教學引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規,我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學生活動:各自測量。]
鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。
講授新課
找一兩個學生表述其結論,表述是要注意糾正其語言的規范性。
動畫演示:
場景二:正方形的性質
師:這些性質里那些是矩形的性質?
[學生活動:尋找矩形性質。]
動畫演示:
場景三:矩形的性質
師:同樣在這些性質里尋找屬于菱形的性質。
[學生活動;尋找菱形性質。]
動畫演示:
場景四:菱形的性質
師:這說明正方形具有矩形和菱形的全部性質。
及時提出問題,引導學生進行思考。
師:根據這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
[學生活動:積極思考,有同學做躍躍欲試狀。]
師:請同學們回想矩形與菱形的定義,可以根據矩形與菱形的定義類似的給出正方形的定義。
學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個角是直角的菱形叫做正方形。”
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
[學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的`地方?這出教材中采用的是第三種定義方式。]
師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)
三、例題講解
例1、分解因式
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)
(3)(4)y2+y+
例2、分解因式
1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7)22、8a2b2-2a4b-8b3
三、知識應用
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數整除?
四、拓展應用
1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+2004被2005整除嗎?
3、若n是整數,證明(2n+1)2-(2n-1)2是8的倍數.
五、課堂小結:今天你對因式分解又有哪些新的認識?
因式分解教案 篇7
一、背景介紹
因式分解是代數式中的重要內容,它與前一章整式和后一章分式聯系極為密切。因式分解的教學是在整式四則運算的基礎上進行的,因式分解方法的理論依據就是多項式乘法的逆變形。它不僅在多項式的除法、簡便運算中有直接的應用,也為以后學習分式的約分與通分、解方程(組)及三角函數式的恒等變形提供了必要的基礎。因此,學好因式分解對于代數知識的后續學習,具有相當重要的意義。
二、教學設計
【教學內容分析】
因式分解的概念是把一個多項式化成幾個整式的積的形式,它是因式分解方法的理論基礎,也是本章中一個重要概念。教材在引入中是結合剪紙拼圖來闡述這一概念的,也可以與小學數學里因數分解的概念類比予以說明。在教學時對因式分解這一概念不宜要求學生一次徹底了解,應該在講授因式分解的三種基本方法時,結合具體例題的分解過程和分解結果,說明這一概念的意義,以達到逐步了解這一概念的教學目的。
【教學目標】
1、認知目標:(1)理解因式分解的概念和意義
(2)認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。
2、能力目標:由學生自行探求解題途徑,培養學生觀察、分析、判斷能力和創新能力,發展學生智能,深化學生逆向思維能力和綜合運用能力。
3、情感目標:培養學生接受矛盾的對立統一觀點,獨立思考,勇于探索的精神和實事求是的科學態度。
【教學重點、難點】
重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。
【教學準備】
實物投影儀、多媒體輔助教學。
【教學過程】
㈠、情境導入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
【初一年級學生活波好動,好表現,爭強好勝。情境導入借助搶答的方式進行,引進競爭機制,可以使學生在參與的過程中提高興趣,并增強競爭意識和探究欲望。】
㈡、探究新知
1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過程,就是學生“口渴”的地方。由此引起學生的求知欲。】
2、觀察:a2-b2=(a+b)(a-b) ,
a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)
【利用教師的主導作用,把學生的無意識的觀察轉變為有意識的觀察,同時教師應鼓勵學生大膽描述自己的觀察結果,并及時予以肯定。】
3、類比小學學過的因數分解概念,得出因式分解概念。(學生概括,老師補充。)
【讓學生自己概括出所感知的知識內容,有利于學生在實踐中感悟知識的生成過程,培養學生的語言表達能力。】
板書課題:§6.1因式分解
因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進一步
1、讓學生繼續觀察:(a+b)(a-b)= a2-b2 ,
(a-b)2= a2-2ab+b2,
20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯系與區別?
(要注意讓學生區分因式分解與整式乘法的區別,防止學生出現在進行因式分解當中,半路又做乘法的錯誤。)
【注重數學知識間的聯系,給學生提供探索與交流的空間,讓學生經歷數學知識的生成過程,由學生發現整式乘法與因式分解的相互關系,培養學生觀察、分析問題的能力和逆向思維能力及創新能力。】
2、因式分解與整式乘法的關系:
因式分解
結合:a2-b2(a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。
結論:因式分解與整式乘法的相互關系——相反變形。(多媒體展示學生得出的成果)
㈣、鞏固新知
1、 下列代數式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2+ +2=(k+ )2;
(8)18a3bc=3a2b?6ac。
【針對學生易犯的錯誤,制造認知沖突,讓學生充分暴露錯誤,然后通過分析、討論,達到理解的效果。】
2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。
【學生出題熱情、積極性高,因初一學生好表現,因而能激發學生學習興趣,激活學生的思維。】
㈤、應用解釋
例 檢驗下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。
練習,計算下列各題,并說明你的算法:(請學生板演)
(1)872+87×13
(2)1012-992
㈥、思維拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機動題:(填空)x2-8x+m=(x-4)( ),且m=
【進一步拓展學生在數學領域內的視野,增強學生對數學的興趣,使學生從小熱衷于數學的學習和探索。通過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創造能力,及時評價,及時矯正。】
㈦、課堂回顧
今天這節課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。
㈧、布置作業
教科書第153的作業題。
【設計思想】
葉圣陶先生曾說過課堂教學的最高藝術是看學生,而不是看教師,看學生能否在課堂中煥發生命的活力。因此本教學是按“投疑——感知——概括——鞏固、應用和拓展”的敘述模式呈現教學內容的,這種呈現方式符合七年級學生的認知規律和學習規律,使學生從被動的學習到主動探索和發現的轉化中感受到學習與探索的樂趣。本堂課先采用以設疑探究的引課方式,激發學生的求知欲望,提高學生的學習興趣和學習積極性,再把因式分解概念及其與整式乘法的關系作為主線,訓練學生思維,使學生能順利地掌握重點,突破難點,提高能力。并在課堂教學中,引導學生體會知識的發生發展過程,堅持啟發式的教學方法,鼓勵學生充分地動腦、動口、動手,積極參與到教學中來,充分體現了學生的主動性原則。并改變了傳統的言傳身教的方式,恰當地運用了現代教育技術,展現了一個平等、互動的民主課堂。
因式分解教案 篇8
教學目標:運用平方差公式和完全平方公式分解因式,能說出平方差公式和完全平方公式的特點,會用提公因式法與公式法分解因式.培養學生的觀察、聯想能力,進一步了解換元的思想方法.并能說出提公因式在這類因式分解中的作用,能靈活應用提公因式法、公式法分解因式以及因式分解的標準.
教學重點和難點:
1.平方差公式;
2.完全平方公式;
3.靈活運用3種方法.
教學過程:
一、提出問題,得到新知
觀察下列多項式:x24和y225
學生思考,教師總結:
(1)它們有兩項,且都是兩個數的平方差;(2)會聯想到平方差公式.
公式逆向:a2b2=(a+b)(ab)
如果多項式是兩數差的形式,并且這兩個數又都可以寫成平方的形式,那么這個多項式可以運用平方差公式分解因式.
二、運用公式
例1:填空
①4a2=()2②b2=()2③0.16a4=()2
④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2
解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2
④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2
例2:下列多項式能否用平方差公式進行因式分解
①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2
解答:①1.21a2+0.01b2能用
②4a2+625b2不能用
③16x549y4不能用
④4x236y2不能用
因式分解教案 篇9
一、教學目標
(一)、知識與技能:
(1)使學生了解因式分解的意義,理解因式分解的概念。
(2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。
(二)、過程與方法:
(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養學生的觀察能力,進一步發展學生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發展學生的逆向思維能力。
(3)通過對分解因式與整式的乘法的觀察與比較,培養學生的分析問題能力與綜合應用能力。
(三)、情感態度與價值觀:讓學生初步感受對立統一的辨證觀點以及實事求是的科學態度。
二、教學重點和難點
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。
三、教學過程
教學環節:
活動1:復習引入
看誰算得快:用簡便方法計算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
(2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
設計意圖:
如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環節設計的計算992–1的值是為了降低下一環節的難度,為下一環節的理解搭一個臺階.
注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導入課題
P165的探究(略);
2. 看誰想得快:993–99能被哪些數整除?你是怎么得出來的?
設計意圖:
引導學生把這個式子分解成幾個數的積的形式,繼續強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
(1)3x(x-1)= ;
(2)(a+b+c)= ;
(3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根據上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
(3)2-16= ;
(4)a3-a= ;
(5)2-6+9= 。
在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發展學生的逆向思維能力。
活動4:歸納、得出新知
比較以下兩種運算的聯系與區別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環節的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
因式分解教案 篇10
教學目標:
1、在整除的情況下,會應用因式分解,進行多項式相除。
2、會應用因式分解解簡單的一元二次方程。
3、體驗數學問題中的矛盾轉化思想。
4、培養觀察和動手能力,自主探索與合作交流能力。
教學重點:
學會應用因式分解進行多項式除法和解簡單一元二次方程。
教學難點:
應用因式分解解簡單的一元二次方程。
設計理念:
根據本節課的內容特點,主要采用師生合作控討式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創新思維為核心,態度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數學素養,能有效地激發學生的思維積極性,學生在學習過程中調動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。
教學過程:
一、創設情境,復習提問
1、將正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
(3)2 a2b-8a2b (4)4x2-9
[四位同學到黑板上演板,本課時用復習“練習引入”也不失為一種好方法,既先復習因式分解的提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]
教師訂正
提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)
二、導入新課,探索新知
(先讓學生思考上面所提出的問題,教師從旁啟發)
師:如果出現豎式計算,教師可以給予肯定;可能出現(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學生怎么得來的,運算的依據是什么?這樣暴露學生的思維,讓學生自己發現錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數,如果用“換元”思想,我們就可以把問題轉化為單項式除以單項式。
(2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(讓學生自己比較哪種方法好)
利用上面的數學解題思路,同學們嘗試計算
(4x2-9)÷(3-2x)
學生總結解題步驟:1、因式分解;2、約去公因式)
(全體學生動手動腦,然后叫學生回答,及時表揚,講練結合, [運用多項式的因式分解和換元的思想,可以把兩個多項式相除,轉化為單項式的除法]
練習計算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作學習
1、以四人為一組討論下列問題
若A?B=0,下面兩個結論對嗎?
(1)A和B同時都為零,即A=0且B=0
(2)A和B至少有一個為零即A=0或B=0
[合作學習,四個小組討論,教師逐步引導,讓學生講自己的想法,及解題步驟,培養語言表達能力,體會運用因式分解的實際運用作用,增加學習興趣]
2、你能用上面的結論解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解為x=-3/2或x=3/2
解:x(2x+1)=0
則x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[讓學生先獨立完成,再組織交流,最后教師針對性地講解,讓學生總結步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉化為解一元一次方程]
3、練習,解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小結
(1)應用因式分解和換元思想可以把某些多項式除法轉化為單項式除法。
(2)如果方程的等號一邊是零,另一邊含有未知數x的多項式可以分解成若干個x的一次式的積,那么就可以應用因式分解把原方程轉化成幾個一元一次方程來解。
設計理念:
根據本節課的內容特點,主要采用師生合作討論式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創新思維為核心,態度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數學素養,能有效地激發學生的思維積極性,學生在學習過程中調動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。
【因式分解教案】相關文章:
因式分解教案04-07
因式分解教案05-26
因式分解的方法教案03-30
因式分解復習教案03-29
因式分解的方法教案08-25
因式分解復習教案09-06
數學因式分解教案09-07
乘除與因式分解(教案)09-09
因式分解教案五篇03-15