《完全平方和(差)公式》教學反思
完全平方和(差)公式是某些特殊形式的多項式相乘,只有掌握完全平方和(差)公式的一些本質地結構特點,才能正確地讓公式更好地幫助我們進行簡單計算。
要學好這部分,首先要注意掌握:
1、公式本身:(a+b)2=a2+2ab+b2
文字敘述:兩數和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。
2、公式的結構特點:等號左邊是一個二項式的平方,等號右邊是一個二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍。或等號右邊記作:首平方,尾平方,2倍之積中間放。
3、公式中字母的廣泛意義:既可以代表任意的數(正數、負數),又可以代表任意代數式。注意代表代數式時,要有“整體思想”的觀念。
其次要注意易錯點:
1、易錯寫:(a+b)2=a2+b2
許多學生往往認為(a+b)2=a2+b2,甚至認為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說明這個問題,我首先利用分地的.故事引入,第一個農夫分得a2+b2,第二個分得(a+b)2,然后讓同學們對比2個代數式,通過各種方法說明這兩者是不同的,比如計算法,代數字法,幾何作圖法(聯系公式的幾何意義),因而加深理解完全平方公式,并借此進行強化訓練。雖然還有極個別學生出現2項的情況,但絕大部分明白了2倍之積中間放的意義。
2、兩個公式中的符號易混:課堂上進行了教學的改進,把2個公式(a+b)2與(a-b)2并作一個公式來處理。為了避免符號上出現混亂,把2個公式的符號特點進行觀察,得出同號得正,異號得負的結論。由此應對兩項式的平方的符號問題,也省去了一些變號的煩惱。
3、兩公式靈活運用
在一些實際問題中,有些題目不能直接運用公式,需要一步轉化才可以。如計算:
(1)(y-x)(x-y)(2)(x+y)(-x-y)
【《完全平方和(差)公式》教學反思】相關文章:
《完全平方和差公式》教學反思06-26
《完全平方和差公式》教學反思05-13
《完全平方和差公式》教學反思范文05-13
《完全平方和差公式》優秀的教學反思05-14
《逆用完全平方和(或差)公式進行因式分解》教學反思11-21
完全平方公式教學反思07-04
《完全平方公式》教學反思12-13
《完全平方公式》教學反思09-02
完全平方公式教學反思09-03