3的倍數的特征教學反思
身為一名剛到崗的教師,課堂教學是我們的工作之一,教學的心得體會可以總結在教學反思中,怎樣寫教學反思才更能起到其作用呢?下面是小編為大家收集的3的倍數的特征教學反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
3的倍數的特征教學反思1
3的倍數的特征的教學與2、5倍數的特征難度上有不同,因為2、5的倍數的特征從數的表面的特點就可以很容易看出(根據個位數的特點就可以判斷出來),但是3的倍數的特征卻不能從表面去判斷,因而我特設以下環節突破重難點預習題。
1、給出一些數讓學生先判斷哪些數是3的倍數。并讓學生說一說你是怎么判斷的?
2、從以上的3的`倍數進行思考:
(1)、3的倍數與它個位上的數有關系嗎?
(2)、 3的倍數的各位上的數的和都是3的倍數嗎?
新課時讓學生從上面的練習中去發現了什么,從而歸納3的倍數的特征:一個數的各個數位上的數字和是3的倍數,這個數就是3的倍數
然后再讓每個同學任意寫一個3的倍數,再看看這個數的各個數位上的數的和是不是3的倍數。要求學生說出方法和思路。
經過以上這些活動后學生都能對一個數是不是3的倍數進行簡單的判斷。特別是學生對3的倍數特征的判斷大多數的學生能先求出各個數位的數字之和是不是3的倍數,然后再進行判斷,效果很好。
3的倍數的特征教學反思2
《3 的倍數的特征》本節課的教學活動,注重學生實踐操作,展開探究活動,組織學生進行交流和探討,注重培養學生發現問題,解決問題的能力,讓學生經歷科學探索的過程,感受數學的嚴謹性和數學結論的正確性。我是從教學環節維度進行觀課的,本節課有五個環節包括:一、復習舊知,直接導入。二、自主探究,合作驗證。三、總結提升,共同驗證。四、運用結論,鞏固訓練。五、全課小結,課后延伸。每個環節環環相扣,設計合理。下面就說一下自己的想法。
一、以舊帶新,引入新課。
趙老師先復習了2、5的倍數的特征,為這節課的學習打下了基礎。趙老師以學生原有認知為基礎,激發學生的探究欲望,利用學生剛學完“2、5的倍數的特征”遷移到“3的倍數的特征”的問題中,由此萌發疑問,激發強烈的探究欲望,因此學生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學生漸漸進入了探究者的角色。
二、親身經歷,探索規律。
本節課教師努力嘗試構建數學生態課堂,讓學生繼續利用小棒擺一擺,進而發現不止是3根、6根小棒能擺出3的倍數,9根也能“只要小棒的根數是3的倍數,擺出來的數就是3的倍數。”教師將“動手擺小棒”升級為“腦中撥計數器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗證,學生的探索發現離“3的倍數的特征”只有咫尺之遙。整節課讓學生經歷“動手操作——觀察發現——舉例驗證——歸納總結”的探究過程,實現課程、師生、知識等多層次的互動。
三、精心選題,鞏固新知。
習題的設計力爭在突出重點,突破難點,遵循學生認知規律的基礎上,體現基礎性、層次性、靈活性、生活性、趣味性。本節課教師設計了3道練習題。在鞏固練習部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數學與生活的聯系。把數學和生活有機聯系起來,使學生體會到數學在現實生活中作用和價值,初步學會用數學的`眼光去觀察事物、思考問題,樹立學好數學、用好數學的志趣。
四、回顧梳理,舉一反。
在學生學習的過程中注意“學習方法”的指導,讓學生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個環節設計了讓學生靜靜的回顧這節課的學習歷程“動手操作——觀察發現——舉例驗證——歸納總結”,使其在數學思想上做進一步的提升。
3的倍數的特征教學反思3
心理學原理表明,新異的刺激可以引起學生的注意和興趣。在教學中,根據不同的教材和要求,采取不同的教學方法,能夠引起學生學習的興趣,有利于創設良好的課堂氣氛。
教學3的倍數特征這一課時,教師組織學生進行下列鞏固練習:
下列數中3的倍數有:()
1435451003328767488
學生利用3的`倍數的特征一下子就回答了上面的問題,得到了老師的肯定。這時我接著說:“我們來一場老師、學生打擂臺怎么樣?看誰說的3的倍數的數最多,我們看誰能考倒老師。”這時同學們興趣盎然,紛紛出題來考老師。
生:42
師:111
生:78
師:57
生:81
師:20xx
生:6891
…………
這時師故意出錯:369041
學生馬上發現了這個數不是3的倍數,師問:“你能不能改一改其中的某個數字使它成為3的倍數。”
生:“可以將1改為2。”
生:“可以將4改為5。”
生:“可以將1改為5。”
生:“可以將1改為8。”
生:“可以將4改為2”
生:“可以將4改為8”
學生回答完后,我及時提問:“你們為什么不改其中的3、6、9和0呢?”學生通過思考回答:“因為0、6、3、9每一個數都是3的倍數,所以只要改4和1這兩個數就行了。”這時我及時指出:“判斷一個數是不是3的倍數可以用篩選法來判斷,在各數位的數字中先篩去3的倍數或和為3的倍數的數字,若余下的數字之和是3的倍數,原數就是3的倍數,否則就不是。”這時我逐漸地出示下列這組數要求學生馬上判斷是否3的倍數。
56
561
5617
56178
561784
5617849
…………
這個鞏固練習,有效地調動了學生的積極性,不斷激起學生認知的內驅力,使學生在探索的過程中,主動學習、主動探索,帶來了內心的滿足感。
3的倍數的特征教學反思4
2、3、5倍數的特征我設計的是一節課,但上完這節課上完后,給我最大的感受,學生對2、5的倍數的特征不難理解,對偶數和奇數的概念也容易掌握,但我由于對教材的把握不夠,時間用到2、5倍數上的較多。以至于對3的倍數特征探究不到位。
好的開始等于成功了一半。課伊始,我設計了搶“30”的.游戲,目的是讓學生從中找到3的倍數,但我發現這個游戲沒讓學生部明白要求沒有能提高學生的興趣。意義不到。數學學習過程中應該是觀察、發現、驗證、結論等探索性與挑戰性活動。首先讓學生獨圈出寫出100以內2、5的倍數,獨立觀察,看看你有什么發現?學生很容易發現他們的特征,而這只是猜測,結論還需要進一步的驗證。但我對這部分的處理太過于復雜零碎。以至于用的時間過多。比如說2、5倍數與其他數位的關系,著就不是本節課的重點。
小組合作,發揮團體的作用,動手實踐、合作交流是學生學習數學的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學生的之一能力傾聽能等等還需進一步訓練。
3的倍數的特征教學反思5
《3 的倍數和特征》一課是在學生自主探究2、5的倍數的特征的基礎上進一步學習,我從學生的已有基礎出發,把復習和導入有機結合起來,通過2、5的倍數特征的復習,設置了“陷阱”,引導學生進行猜想3的倍數的特征可能是什么,從而引發認知沖突,激發學生的求知欲望,經歷新知的產生過程。
一、引發猜想,產生沖突。
前一課時,學生在發現2、5的倍數特征時,都是從個位上研究起的,所以在復習舊知時,我也特意強調了這一點。接下來我引導學生猜想3 的倍數特征是什么時,不少學生知識遷移,提出:個位上是3、6、9的數應該是3 的倍數;3 的倍數都是奇數。提出猜想,當然需要驗證,很快就有學生在觀察百數表后提出問題:個位上是3、6、9的數只是有些是3的位數,有些不是3的倍數;有些偶數也是3的倍數,而有些奇數卻不是3 的倍數。學生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數表里找出3的倍數,不少學生就開始了繁雜的計算,這個環節我給了他們時間慢慢去算,用意在于體會這種計算的不方便,從而去想有沒有更好的方法去判斷一個數是否是3 的倍數。
二、自主探究,建構特征
找3 的倍數的特征是本節課的難點,我處理這個難點時力求體現學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節課中,始終為學生創造寬松的學習氛圍,讓學生自主探索并掌握找一個3的倍數的特征的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
在完成100以內的數表中找出所有3 的倍數后,我引導學生觀察發現3的倍數的個位可以是0~9中任何一個數字,要判斷一個數是不是3的倍數不能和判斷2、5的倍數一樣只看個位,打破了學生的認知平衡,然后我提出到底什么樣的數才是3的倍數這一問題。這個問題的解決需要借助計數器,于是我給學生準備了簡易計數器,讓學生多次撥數后,觀察算珠的個數有什么共同的特點。反應比較快的學生就有了發現:所用的算珠個數都是3 的倍數。在學生提出這個猜想后,全班學生再一次進行驗證第二個猜想,這個驗證也是在突破難點,學生在驗證中掌握難點。同時,我也讓學生對比了之前所用的方法,體驗這個新方法的快捷與簡便,讓學生的印象更深刻。這個教學環節在教師的引導下克服困難,解決了力所能及的問題,達到了新的平衡,開發了學生的創新潛能。
在教學過程中讓學生自主探索,雖然用了很多時間,但我認為學生探索的比較充分,學生的收獲會更多。
三、鞏固內化,拓展提高。
在上述教學過程中,雖然每個同學只操作了一兩次,但是通過學生之間的合作交流,在教師的引導下,學生經歷了一個典型的'通過不完全 歸納的方法得出規律的過程。學生在這一過程中的體驗,無論是方法層面,還是思想層面均將對后繼的學習產生深刻的影響。
在初步感知3 的倍數的特征后,我提出了問題:一個數,在計數器上撥出它,所用數珠的顆數是3的倍數,它就是3的倍數,對嗎?你是否認為我們研究出的結論對所有的數都適用呢?這兩個問題的提出,意義在于通過“更大的數”和“任意找”兩方面,使學生深切體驗了不完全歸納法的這一要義,同時也培養了學生縝密思考問題的意識和習慣。
3的倍數的特征教學反思6
今天我教學了3的倍數的特征,我首先復習2、5的倍數的特征,然后我出示了幾個不同的四位數,問生:誰能很快判斷出哪些是3的倍數?想知道有什么竅門嗎?這們引入課題很順當,學生也很有興趣。下面,我先讓學生寫出50以內3的倍數,再觀察:3的倍數有什么特點?學生一時很難發現,仍從個位上的數去觀察,但馬上被其他同學否定,當時我心里有點擔心怎么看不來呢?,我啟發學生再看看個位和十位上的數,通過交流后,在部分學生馬上發現把每個數的.數字加起來的和除以3都是正好除的,我讓學生用這個發現對書上第76頁的表格100以內的數進行驗證一下,學生驗證后我又讓學生從100以外的數來驗證。從而得出了3的倍數的特征。再通過用1、2、6可以寫成哪些三位數?這些三位數是3的倍數嗎?由此有什么發現?讓學生進一步明白3的倍數跟數字的位置沒有關系,只跟各位上數的和有關系。這樣學生在完成想想做做第5題時學生思考時就不會漏寫了。最后,通過后面的練習,我覺得在教學某些知識時,最好老師不要輕易下結論,只有讓他們自己在反復實踐中自己得出結論,才能牢固地掌握知識。
3的倍數的特征教學反思7
3的倍數的特征比較隱蔽,學生一般想不到從“各位上數的和”去研究。上課開始先讓學生回顧舊知:2的倍數和5的倍數有什么特征?學生們發現都只要看一個數個位上的數就行了,于是很順利地設下了陷阱:“同學們,那猜猜看3的倍數有什么特征呢?猜測是一種常用的數學思考方法,讓學生猜測3的倍數有什么特征,能較好地調動學生的學習積極性。由于受2的倍數和5的倍數的特征的影響,有學生很自然猜測到“個位上是0,3,6,9的數一定是3的倍數”,還有學生猜測“個位上的數字加起來是3,6,9一定是3的倍數”,能想到這點應該說是了不起的`。本課到這里都很順利,因為完全在我的預設之中。
下面進入驗證環節,先讓學生判斷自己的學號是不是3的倍數,再在這些學號中挑出個位上是0,3,6,9的數,通過交流,學生發現這些數不一定是3的倍數。學生初步發現了3的倍數的特征與2和5的倍數不同,不表現在數的個位上,那3的倍數究竟與什么有關系呢?于是進入到動手操作環節。在此基礎上,抽象成各位上數的和,是理解3的倍數特征的關鍵。
“試一試”是數學的第三步,如果一個數不是3的倍數,那么這個數各位數的和不是3的倍數,利用反例進一步證實3的倍數的特征,體現了數學的嚴謹性和數學結論的確定性。隨后設計了一系列習題,使學生得到鞏固提高。
3的倍數的特征教學反思8
【初次實踐】
課始,讓學生任意報數,師生比賽誰先判斷出這個數是不是3的倍數,正當我沉浸在游戲的情境之中,幾個“不識時務者”打亂了課前的預想。“老師,我知道其中的秘密,只要把各個數位上的數加起來,看看是不是3的倍數就行了!”“對!在數學書上就有這句話。”……又有幾個學生偷偷地打開了數學書。“怎么辦?”謎底都被學生揭開了。面對這一生成,我沒有死守教案,而是果斷地調整了預設,變“探索”為“驗證”,將結論板書在黑板上,讓學生理解這句話的意思,然后組織學生將百數表中3的倍數圈出來,驗證是不是具有這樣的特征,最后進行一系列鞏固練習……
[反思]
課堂上經常會出現類似上述案例中的“超前行為”,即有些學生提前把要探究的新知識和盤托出。我們的習慣做法就是變“探索”為“驗證”,當然有些知識的教學采用這種方式是有效的,然而本課中“驗證”的過程真能取代“探究發現”的過程嗎?僅僅舉幾個例子試一試,驗證方法單一,思維含量低,學生充其量只能算是執行操作命令的“計算器”,又能獲得哪些有益的發展?如果經常進行這樣的教學,還容易使學生形成浮躁淺薄,不求甚解,甚至只要結論的不良學習風氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學生已有的知識經驗,而且在已經揭開“謎底”的情況下,再試圖引導學生進行猜想、實驗、發現,體驗遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發學生探究的熱情,促使學生進行深入探究呢?
【再次實踐】
(與第一次教學情況基本相同,有些學生能夠正確地判斷一個數是不是3的倍數,這時一些學生卻依然感到困惑,我設法將這一困惑激發出來。)
師:同學們真能干,這么快就知道了3的倍數的特征,上節課我們學習了2、5的倍數的特征只和什么有關?
生:只和一個數的個位有關。
師:與今天學習的知識比較一下,你有什么疑問嗎?
生1:為什么判斷一個數是不是3的倍數只看個位不行?
生2:為什么判斷一個數是不是2、5的倍數只看個位,而判斷是不是3的倍數要看各位上數的和?
……
師:同學們思考問題確實比較深入,提出了非常有研究價值的問題。那我們先來研究一下2、5的倍數為什么只和它的個位有關。
(學生嘗試探索,教師適時引導學生從簡單數開始研究,借助小棒或其他方法進行解釋。)
生1:我在擺小棒時發現,十位上擺幾就是幾十,它肯定是2、5的倍數,因此只要看個位擺幾就可以了。
生2:其實不用擺小棒也可以,我們組發現每個數都可以拆成一個整十數加個位數,整十數當然都是2、5的倍數,所以這個數的個位是幾就決定了它是否是2、5的倍數。
師:同學們想到用“拆數”的方法來研究,是個好辦法。
生3:是否是3的倍數只看個位就不行了。比如13,雖然個位上是3的倍數,但10卻不是3的倍數;12雖然個位不是3的倍數,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數和個位上的數合起來是不是3的倍數就行了。
生4:我也是這樣想的,我還發現十位上余下的數正好和十位上的數字一樣。
生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數和十位上的數不一樣了,比如40除以3只余1,余下的數就和十位數字不同。
生(部分):對。
生4:其實40不要拆成39和1,你拆成36和4,余下的數不就和十位數字相同了嗎?
生6:也就是說整十數都可以拆成十位上的數字和一個3的倍數的數。這樣只要看十位上的數和個位上的和是不是3的倍數就可以了。
師:同學們確實很厲害!那三位數、四位數是不是也有這樣的規律呢?
學生用“拆數”的方法繼續研究三、四位數,發現和兩位數一樣,只不過千位、百位上余下的數要依次加到下一位上進行研究。3的倍數的特征在學生頭腦中越來越清晰。
師:同學們通過自己的探索,你們不僅發現了3的倍數的特征,還弄清了為什么有這樣的特征。現在你還有哪些新的探索想法呢?
生1:我想知道4的倍數有什么特征?
生2:我知道,應該只要看末兩位就行了,因為整百、整千數一定都是4的倍數。
師:你能把學到的方法及時應用,非常棒!
生3:7或9的倍數有什么特征呢?
……
師:同學們又提出了一些新的、非常有價值的`問題,課后可以繼續進行探索。
[反思]
1. 找準知識間的沖突,激發探究的愿望。學生剛剛學習了2、5的倍數的特征,知道只要看一個數的個位,因此在學習3的倍數的特征時,自然會把“看個位”這一方法遷移過來。而實際上,3的倍數的特征,卻要把各個位上的數加起來研究。于是新舊知識之間的矛盾沖突使學生產生了困惑,“為什么2或5的倍數只看個位?”“為什么3的倍數要把各個位上的數加起來研究?”……學生急于想了解這些為什么,便會自覺地進入到自主探究的狀態之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準知識間的沖突并巧妙激發出來,就能激起學生探究的愿望。這樣不僅有利于學生對新知的掌握,有效地將新知納入到原有的認知結構中去,還有利于培養學生深入探究的意識和能力。
2. 激活學習中的困惑,讓探究走向深入。創造和發現往往是由驚訝和困惑開始。對比兩次教學,第一次教學由于忽視了學習中的困惑,學生對于3的倍數的特征理解并不透徹,探索的體驗也并不深刻。第二次教學留給學生質疑的時空,巧設沖突,讓學生進行新舊知識的對比,將困惑激發出來,通過學生間相互啟發、相互質疑,對問題的思考漸漸完整而清晰。學生不但經歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發現,探究能力也得到切實提高。學生在學習中難免會產生困惑,這種困惑有時是學生希望理解更全面、更深刻的表現。面對這些有價值的思考,我們要有敏銳的洞察力,采取恰當的方法將其激活,促使探究活動走向深入,讓學生獲得更大的發展。當然,學生在學習中可能產生怎樣的困惑,面對這一困惑又該如何恰當引導,尚需要教師課前精心預設。
3. 溝通知識間的聯系,讓學生不斷探究。顯然,2、5的倍數的特征與3的倍數的特征是相互聯系的,其研究方法是相通的(都可以通過“拆數”進行觀察),特征的本質也是相同的。這種研究方法和特征本質的及時溝通,激發了學生繼續研究4、7、9……的倍數的特征的好奇心,促使學生不斷探究,將學習由課內延伸到課外,并在探究過程中建構起對數的倍數特征的整體認識,感悟數學其實就是以一馭萬,以簡馭繁。課堂不是句號,學生的發展始終是教學的落腳點。我們的教學絕不能僅僅局限于學生對于一堂課知識的掌握,而應著眼于學生對于解決問題方法的感悟,獲得可持續發展的動力。
3的倍數的特征教學反思9
《3的倍數的特征》看似一節知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應該僅僅是對知識的掌握,更應該使學生站在跳板上學習數學,關注數學思維的發展。
新的課程理念要求我們在教學中盡可能地為學生提供一個自主、合作、探究機會,其宗旨也就在于培養學生在實際的學習活動中,善于發現問題和提出問題的能力,靈活運用知識去解決問題的能力,在研究和解決問題的過程中學會合作。3的倍數的特征,有規律可循,容易上成機械刻板、枯燥無味的課,學生雖能死套規律判斷,但學生的能力沒能培養,智力得不到開發。本課的設計采用了啟發與發現相結合的教學方法,激勵學生大膽猜想,動手實踐,去發現規律,形成技能,升華至應用于生活。
本課主要使學生在原有認知的基礎上產生認知沖突,進而產生新的探索欲望,突出了對學生“提出問題—探索問題—解決問題”的能力培養,學生能在猜想、操作、驗證、交流、反思、歸納的數學活動中,獲得較為豐富的數學經驗,也有助于創造性的培養。當然,培養學生的創造個性,僅僅停留在教學活動的情境上是不夠的,教師首先要具有創造精神,注重設計寬松和諧民主的'教學氛圍,尊重學生,抓住一切可以利用的機會,激發學生的創新欲望,學生的創造意識才能得以培養,個性才能充分發展。本課重點是要理解3的倍數特征,能夠準確判斷一個數是不是3的倍數。我采用的是復習導入,先和學生們一起回憶了一下
2、5的倍數特征,然后出示本課的教學目標。新授環節先讓學生猜測一下3的倍數會有哪些特征呢?接著采用數形結合的方法,學生動手操作,在1~100的數字卡里找一找3的倍數,然后用自己喜歡的符號圈起來,然后觀察小組討論匯報。發現3的倍數特征不像
2、5的倍數特征一樣,看一個數的末尾了,引導學生是不是要看這個數其它的數位上的數呢?學生發現也不是很難。教材中有提示,學生回家預習后也會清楚敘述出3的倍數特征是一個數各個數位上數字相加的和。找準知識之間的沖突并巧妙激發出來,這是一節課的出彩之處,剛開始我們先采用課本上百數表來研究,結果在一個班實踐后認為效果并不是很理想,由于數太多,讓學生觀察3的倍數的這些數時,并從中找出相同的地方,結果,很多同學找了與本節課毫無關系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數代表百數表,于是我設計了一個表格,讓學生用除法計算的方法找到3的倍數的特征,并觀察這些數,這些數的個位分別從0到9都有,讓學生知道3的倍數的特征跟數的個位沒有關系,然后從中又把像45和54,75和57,123和321等特殊的數單獨展示出來,讓學生觀察從中找出規律。結果我又重新上了這節課,效果比上節課要好。
這節課結束后,我感覺最大的缺憾之處,最后總結3的倍數特征時,應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發展始終是教學的落腳點。我們的教學應著眼于學生對解決問題方法的感悟,這樣才可獲得最佳的效果。
3的倍數的特征教學反思10
2、5、3的倍數特征是分為兩節課完成的,上完后,給我最大的感受,學生對2、5的倍數的特征不難理解,對偶數和奇數的概念也容易掌握,2、5的倍數的特征這節課,概念比較多,學生很容易混淆。怎樣才能把抽象的概念轉化為形象直觀的知識讓學生們接受呢?
一、互動、質疑,激發學生的探究興趣。
好的開始等于成功了一半。課伊始,我便說:“老師不用計算,就能很快判斷一個數是不是2或5的倍數,你們相信嗎?”學生自然不相信,爭先恐后地來考老師,結果不得而知。幾輪過后,看到他們還是不服氣的樣子,我故作神秘說:“其實,是老師知道一個秘訣。你們想知道是什么嗎?”由此引出課題。這樣大大的調動了學生學習的積極性,激發了其探究的欲望。
二、鼓勵學生獨立思考,經歷猜測驗證的過程。
數學學習過程中充滿了觀察、實驗、推斷等探索性與挑戰性活動。由于5的倍數的特征比較容易發現,我便把它調到2的倍數的特征前面來進行教學。首先讓學生獨立寫出100以內5的倍數,獨立觀察,看看你有什么發現?學生很容易發現“個位上是0或5的數是5的倍數。”而這只是猜測,結論還需要進一步的驗證。我們不能滿足于學生能夠得到結論就夠了,而應該抱著科學嚴謹的態度,引導學生認識到這個結論僅僅適用于1—100這個小范圍。是不是在所有不等于0的自然數中都適用呢?還需要研究。在老師的引導下,學生開始認識到還要繼續拓展范圍,研究大于100的自然數中所有5的倍數是不是也是個位上的數字是5或0。在這一過程中,學生感受到了科學嚴謹的態度,知道了在進行一項數目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴范圍大,最后得出科學的結論。這樣,當下節課研究3的倍數的特征時,學生就會大膽猜想,并有方法來驗證自己的猜想了。
三、小組合作,發揮團體的作用
動手實踐、合作交流是學生學習數學的重要方式。與5的倍數特征相比較,2的倍數特征稍顯困難,所以我組織學生利用小組合作的方式,根據探究5的倍數的特征的`思路,小組合作探究2的倍數的特征。經過這樣的合作討論,大多數小組能夠得到正確或接近正確的答案。突出了學生的主體地位,讓他們在充分的探索活動中充分發現規律、舉例驗證、總結歸納。
2、5、3的倍數的特征教學反思四:
課上完了,整體來說感覺良好。學生的主體作用在這節課中得到了充分的發揮,積極的思維、熱烈的氣氛等均給人以很大的感染,仔細分析,我認為這節課課的成功得益于以下幾方面:
1.2.3.5倍數的特征,它們在知識體系中是一個整體,而在特征和判斷方法上有各自不同,這使得學生的學習過程始終處在“產生沖突解決沖突”的過程中,為學生的積極探索提供了較大的空間,也為每個學生在不同水平上參與學習提供了可能。例如,在探索能被3整除的數的特征時,有的學生提出“個位上是3的倍數”有的學生提出“某一位上的數是3的倍數”;而水平較高的學生提出:“各個數位上的數字之和是3的倍數”。在這樣一個探索過程中學生的主動性和創造性得到了發揮。這是我認為比較成功的地方。
3的倍數的特征教學反思11
《3的倍數的特征》是學生在學習過2.5倍數特征之后的又一內容,因為2.5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我決定在這節課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數特征。
一、猜想:讓學生回顧舊知,2的倍數和5的倍數有什么特征,學生們發現都只要看一個數個位上的數就行了,于是很順地設下了陷阱:同學們,那猜猜看3的倍數有什么特征呢?由于受2的倍數和5的倍數的特征的影響,有學生很自然猜測到:“個位上是0,3,6,9的'數一定是3的倍數”。
二、驗證::先讓學生在百數圖中找找看,顯然像13、16、19等等的數不是3的倍數,學生初步發現了3的倍數的特征與2和5的倍數不同,不表現在數的個位上,那3的倍數究竟與什么有關系呢。
三、探究:在此基礎上,讓學生在百數圖中找出3的倍數的數,如果把這些3的倍數的個位數字和十位數字進行調換,它還是3的倍數嗎?(讓學生動手驗證)
12→2115→5118→8124→4227→72
我們發現調換位置后還是3的倍數,那3的倍數有什么奧妙呢?
如果把3的倍數的各位上的數相加,它們的和是3的倍數。
四、驗證:下面各數,哪些數是3的倍數呢?
2105421612992319876
小結:從上面可知,一個數各位上的數字之和如果是3的倍數,那么這個數就是3的倍數。這樣結論的得出水到渠成。
3的倍數的特征教學反思12
“能被3整除數的數”一課,能體現新的教育理念、教育思想。仔細分析,有以下幾個特點:
1、確立了基本技能目標和發展性目標并重的教學目標。
本節課不僅重視學生掌握能被3整除數的特征,并能運用特征進行正確判斷,同時十分重視學生學習過程的體驗和方法的滲透,讓學生通過“猜測——驗證——提出新的假設——驗證”的探索過程來發現知識,獲得結論,并感悟方法。
2、理性處理教材,使教學內容生活化。
教科書只是提供了學生學習活動的基本線索。教學中,教師要充分發揮主觀能動性,創造性的使用教科書,本節課重新設計例題,通過用“0——9”十個數字組成能被整除的三位數讓學生探索特征,這樣處理使教學內容有較強的靈活性,促進了學生思維的發展。教學內容生活化不僅能激發學生興趣,產生親切感,而且使學生認識到現實生活中蘊藏著豐富的數學問題。開課時收集的數據一方面激發了學生學習的`興趣,同時也縮短了教師和學生的距離,課后“你再長幾歲,這個歲數就能被3整除”這一開放題富有情趣,給學生留下了深刻的印象。
3、著力改變學生的學習方式。
學習方式的轉變是本節課的主要特色。本節課始終以自主探索、合作交流為主要的學習方式,讓學生通過自主選教學內容,舉例驗證等獨立思考和小組討論等合作探究活動,獲得教學知識、感悟方法。如在課的第二階段,設計三個層次的教學活動,讓學生充分探索、討論、交流,使學生真正成為學習的主人。第一層通過學生猜測、舉例、選數字組數,使學生產生兩次認知沖突;第二層通過交換三位數數字的位置,仍然沒能發現特征,產生第三次認知沖突;第三層次通過計算各位上的數的“和、差、積、商”使結論逐漸顯露。這一過程不僅培養了學生探究精神,磨練了意志,同時也使學生品嘗了成功的喜悅。
4、合理定位教師角色,營造民主、和諧的學習氛圍。
課堂教學中只有擺正了師生關系,才可能使學生得到發展。本節課學生始終是數學學習的主人,教師是數學學習的組織者、引導者和合作者。可以從以下兩方面看出:一是從師生活動的時間分配上,二是從分層探究、有針對性的適當引導上。這節課從開始到結束,氣氛始終處在民主、和諧之中,生活化的學習材料、平等的師生關系和開放的探究方式,《3的倍數的特征》教學反思篇5
《3的倍數的特征》是學生在學習過2和5倍數特征之后的又一內容,因為2和5的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而3的倍數的特征,不能只從個位上的數來判斷,必須把其他各位上的數相加,看所得的和是否為3的倍數來判斷,學生理解起來有一定的困難。我決定在這節課中突出學生的自主探索,使學生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出3的倍數特征。
但上課的過程中,學生并沒有按照我想的思路去進行,一個學生在我沒有預想的前提下說出了3的倍數的特征,所以我準備讓四人小組去合作交流發現3的倍數的特征也沒有進行。只是讓學生兩人去再說一說剛才那個學生的發現,加以理解,鞏固。
這節課結束后,我感覺以下方面做得不好。
1、備課不充分。自己在備課時沒有好好的去備學生,沒有做好多方面的預設;
2、在觀察百數表到后面總結3的倍數特征時,都應放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學生能說出的盡量讓學生說,多放手,相信學生。
3的倍數的特征教學反思13
《2、5、3倍數的特征練習課》是一堂練習課,本節課是在學生已經學習了2,5,3倍數的特征的基礎上進行教學的。為以后學習分數,特別是約分、通分,需要以因數倍數的知識的概念為基礎,到進一步掌握公因數、最大公因數和公倍數、最小公倍數的概念,需要用到質數、合數的概念,而最基礎的就是掌握2,5,3的倍數的特征。從開始學習2,5的倍數特征僅僅體現在個位數上,到學習3的倍數特征時從只看個位轉向考察各位上的數相加的和,學生已經有了思路上的轉變,思維的轉折,觀察角度的改變,以此讓學生自主探索4的倍數特征,但由于與2,5,3的'倍數特征又有些許不同,對學生依然有一定難度。
如果只是單一的做習題,勢必有學生會感到枯燥無味,這樣子學生的學習效果難以保障,對教師的功底與教學策略有很大的挑戰。因此課堂伊始,我直接開門見山式的先對前面學習的知識進行復習梳理,接著利用學生感興趣也是正在使用著的工具——“手機”的鎖屏密碼為線索,通過提示讓學生解密碼的方式激發學生的學習興趣,然后以破解后的密碼1080,導出本節課我們要重點探究的4的倍數特征。讓學生帶著趣味,自主的去探索。由于有了前面探索2,5,3倍數特征的基礎在,所以在探索4的倍數特征時放手讓學生通過操作,觀察,思考從而有所發現,體驗探索的樂趣。接著通過計數器,讓學生明白判斷4的倍數特征背后的原理。最后在練習鞏固中,逐漸熟練應用所學知識,感知數學知識和我們的生活緊密聯系。如何讓練習課不僅僅只是做練習,讓學生能在練習中獲得對知識的理解以及思維上實質的提升,仍然值得我在好好的去思考探索。
3的倍數的特征教學反思14
3的倍數的特征比較隱蔽,學生一般想不到從“個位上的數字之和”去研究。上課開始先讓學生通過練習回顧舊知:2的倍數與5的倍數的特征。然后讓學生猜想:3的倍數又有什么特征呢?這樣能較好調動學生學習的積極性。由于受2的倍數與5的倍數特征的影響,有些學生很自然猜測到“個位上是0,3,6,9的數是3的倍數”、“各位上的數字加起來是3,6,9的數是3的倍數”等等,學生能想到這幾點是非常不錯的。
學生進行猜想后,我并沒有判斷學生的猜想是否正確,而是出現了百數表,讓學生在百數表中圈出所有的3的倍數,讓學生從表中發現3 的倍數的特征,把自己發現的在小組間交流。此時,我還是沒有判斷學生的發現是否正確,而是讓學生打開課本自學,從課本中找3的倍數的特征,當遇到問題解決不了時,我們可以向課本求助。然后問學生“各位上的數字的和是3的倍數是什么意思?請結合舉例說說。”接下來將數擴到百以上,通過各種方式舉正反例通過計算來驗證從而得出3的倍數的特征。最后比較驗證之前的猜想與發現。當我們向課本找到結論時,我們也要質疑,通過舉例來驗證。鼓勵學生對知識要敢于質疑,敢于通過各種方式去驗證,培養學生良好的數學思維。
在教學中,我能有效獲取課堂生成資源,同時也注重方法的指導。比如:同桌舉例驗證時,涉及到了“123456”是否是3的倍數,先給予學生思考的.時間,讓后問:還有更加簡便的方法嗎?老師有效引導,讓學生去發現“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數等。有較好的教學機智與課堂駕馭能力,如:在百數表圈3的倍數時,我的課件中有個數“99”忘記沒有圈好,學生發現了這問題。在這里,我是表揚了發現此問題的學生,老師故意說:我是特意沒有圈的,看我們的學生觀察是否仔細,考慮問題是否全面……,把原本的錯誤變成良好的教學資源。練習的設計業很有層次與梯度,聯系生活實際。
本節課也有很多不足的地方:百數表中的數據太多,部分學生的發現是亂七八糟的;在舉例驗證的過程中,學生的計算還不夠,學生親自從算中去體會更好;總結不太及時,從及時總結中提煉、提升會更好。
3的倍數的特征教學反思15
站在跳板上學習數學——3的倍數的特征教學反思
《3的倍數的特征》看似一節知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應該僅僅是對知識的掌握,更應該使學生站在跳板上學習數學,關注數學思維的發展 。
“3的倍數的特征”屬于數論的范疇,離學生的生活較遠,有一定的難度。而2、5的倍數的特征是學生學習這一課的基礎。所以,在教學“3的倍數的特征”時,我首先以學生原有認知為基礎,激發學生的探究欲望,利用學生剛學完“2、5的倍數的特征”產生的負遷移,直接拋出問題,激活了學生的原有認知,學生自然而然地會將“2、5的倍數的特征”遷移到“3的倍數的特征”的'問題中,由此產生認知沖突,萌發疑問,激發強烈的探究欲望,因此學生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學生漸漸進入了探究者的角色。但針對這樣的環節,也有老師提出反對意見,他們認為教師在教學中不僅要注重知識的正遷移,還要防止負遷移的產生,要能正確地預見學生學習中可能出現的錯誤,采取適當措施,防患于未然,達到所謂“防微杜漸”的目的;他們滿足于學生的一路凱歌,陶醉于學生的盡善盡美,視學生的差錯為洪水猛獸。但是課堂就是學生出錯的地方,出錯是學生的權利,學生的錯誤是勞動的成果,關鍵是要看我們教師如何看待學生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學的巨大財富”。正式因為如此,我們的新課堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學生總會出現各種各樣的錯誤,我們的課堂教學不應該有意識地去避免學生犯錯誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應變的機智,給學生一個出錯的機會和權利。
其次,看一個數是不是2、5的倍數,只需看這個數的個位。個位是0、2、4、6、8的數就是2的倍數,個位是0、5的數就是5的倍數。而3的倍數特征則不然,一個數是不是3的倍數,不能只看個位,而要看它所有所有數位上的數的和是不是3的倍數。在教學中,我和大多數的教師一樣,更多的是關注兩者的不同,注重讓學生對兩種特征進行區分,因此,教學中往往刻意對比強化,凸顯這種差異。但這樣的處理很明顯在數論的角度上割裂了兩者的共同點。實際上教師在引導學生發現3的倍數的獨特特征的同時,也應該注意引導學生歸納2、3、5倍數特征的共同點。別小看這寥寥數言的引導,實質它蘊藏著深意。因為從數論角度講一個數能否被2、3、5乃至被其它數整除,其研究的理論基礎是一樣的:即如果各個數位上的數被某數除,所得的余數的和能夠被某數整除,那么這個數也一定能被某數整除。當然,小學生由于知識和思維特點的限制,還不可能從數論的高度去建構與理解。但是,這并不意味著教師不可以作相應的滲透。事實上,正是由于有了教師看似無心實則有意的點撥:“其實3的倍數特征與2、5的倍數特征其實有一點還是很像的,不知同學們注意到沒有?”學生才可能從2、3、5倍數特征孤立、割裂、甚至是相互對立的表象中跳離出來,朦朧地感受到這三者之間的聯系:2、3、5倍數特征可以看作是一樣的,都是看它是不是誰的倍數,只不過判斷一個數是不是2、5的倍數,只需看這個數的個位是不是2、5的倍數,而判斷一個數是不是3的倍數就要看它所有數位的和是不是3的倍數。
【3的倍數的特征教學反思】相關文章:
《3的倍數的特征》教學反思02-11
3的倍數的特征的教學反思02-18
3的倍數的特征教學反思03-28
3的倍數的特征教學反思07-17
3的倍數特征教學反思04-07
《3的倍數的特征》教學反思04-11
《3的倍數特征》教學反思04-11
3的倍數特征教學反思07-12
《3的倍數特征》教學反思07-20