鴿巢問題教學課件
“鴿巢問題”又稱“抽屜原理”或“鞋盒原理”,它是組合數學中最簡單也是最基本的原理之一。下面是小編為大家收集整理的鴿巢問題教學課件相關內容,歡迎閱讀。
鴿巢問題教學課件
教學目標:
1、使學生經歷將一些實際問題抽象為代數問題的過程,并能運用所學知識解決有關實際問題。
2、能與他人交流思維過程和結果,并學會有條理地、清晰地闡述自己的觀點。
教學重點:分配方法。
教學難點:分配方法。
教學方法:列舉法 分析法
學習方法:嘗試法 自主探究法
教學用具:課件
教學過程:
一、 定向導學(3分)
(一)游戲引入
師:同學們,你們玩過搶椅子的游戲嗎?現在,老師這里準備了3把椅子,請4個同學上來,誰愿來?
1、游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2、討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現實生活中存在著的一種現象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。
(二)揭示目標
理解并掌握解決鴿巢問題的解答方法。
二、 自主學習(8分)
1、看書68頁,閱讀例1:把4枝鉛筆放進3個文具盒中,可以怎么放?有幾種情況?
(1)理解“總有”和“至少”的意思。
(2)理解4種放法。
2、全班同學交流思維的過程和結果。
3、跟蹤練習。
68頁做一做:5只鴿子飛回3個鴿舍,至少有2只鴿子要飛進同一個鴿舍里。為什么?
(1) 說出想法。
如果每個鴿舍只飛進1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進其中的一個鴿舍或分別飛進其中的兩個鴿舍。所以至少有2只鴿子飛進同一個鴿舍。
(2) 嘗試分析有幾種情況。
(3) 說一說你有什么體會。
三、合作交流(8)
1、出示例2
把7本書放進3個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?(1)合作交流有幾種放法。
不難得出,總有一個抽屜至少放進3本。
(2)指名說一說思維過程。
如果每個抽屜放2本,放了6本書。剩下的1本還要放進其中一個抽屜,所以至少有1個抽屜放進3本書。
2、如果一共有8本書會怎樣呢10本呢?
3、你能用算式表示以上過程嗎?你有什么發現?
7÷3=2……1 (至少放3本)
8÷3=2……2 (至少放4本)
10÷3=3……1 (至少放5本)
4、做一做
11只鴿子飛回4個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?
四、質疑探究(5分)
1、鴿巢問題怎樣求?
小結:先平均分配,再把余數進行分配,得出的就是一個抽屜至少放進的本數。
2、做一做。
69頁做一做2題。
五、小結檢測(10)
(一)小結
鴿巢問題的解答方法是什么?
物體的數量大于抽屜的數量,總有一個抽屜里至少放進(商+1)個物體。
(二)檢測
1、填空
( 1)7只鴿子飛進5個鴿舍,至少有( )只鴿子要飛進同伴的鴿舍里。
( 2)有9本書,要放進2個抽屜里,必須有一個抽屜至少要放( )本書。
(3)四年級兩個班共有73名學生,這兩個班的學生至少有( )人是同一月出生的`。 4、任意給出3個不同的自然數,其中一定有2個數的和是( )數。
2、選擇
(1)5個人逛商店共花了301元錢,每人花的錢數都是整數,其中至少有一人花的錢數不低于( )元。 a、60 b、61 c、62 d、59
(2)3種商品的總價是13元,每種商品的價格都是整數,至少有一種商品的價格不低于( )元。 a、3 b、4 c、5 d、無法確定