正比例函數教學設計
11.2 一次函數
11.2.1 正比例函數
教學目標
1.認識正比例函數的意義.
2.掌握正比例函數解析式特點.
3.理解正比例函數圖象性質及特點.
4.能利用所學知識解決相關實際問題.
教學重點
1.理解正比例函數意義及解析式特點.
2.掌握正比例函數圖象的性質特點.
3.能根據要求完成轉化,解決問題.
教學難點
正比例函數圖象性質特點的掌握.
教學過程
ⅰ.提出問題,創設情境
一九九六年,鳥類研究者在芬蘭給一只燕鷗(候鳥)套上標志環.4個月零1周后人們在2.56萬千米外的澳大利亞發現了它.
1.這只百余克重的小鳥大約平均每天飛行多少千米(精確到10千米)?
2.這只燕鷗的行程y(千米)與飛行時間x(天)之間有什么關系?
3.這只燕鷗飛行1個半月的行程大約是多少千米?
我們來共同分析:
一個月按30天計算,這只燕鷗平均每天飛行的路程不少于:
25600÷(30×4+7)≈200(km)
若設這只燕鷗每天飛行的路程為200km,那么它的行程y(千米)就是飛行時間x(天)的函數.函數解析式為:
y=200x(0≤x≤127)
這只燕鷗飛行1個半月的行程,大約是x=45時函數y=200x的值.即
y=200×45=9000(km)
以上我們用y=200x對燕鷗在4個月零1周的飛行路程問題進行了刻畫.盡管這只是近似的,但它可以作為反映燕鷗的行程與時間的對應規律的一個模型.
類似于y=200x這種形式的函數在現實世界中還有很多.它們都具備什么樣的特征呢?我們這節課就來學習.
ⅱ.導入新課
首先我們來思考這樣一些問題,看看變量之間的對應規律可用怎樣的函數來表示?這些函數有什么共同特點?
1.圓的周長l隨半徑r的大小變化而變化.
2.鐵的密度為7.8g/cm3.鐵塊的質量m(g)隨它的體積v(cm3)的大小變化而變化.
3.每個練習本的厚度為0.5cm.一些練習本摞在一些的.總厚度h(cm)隨這些練習本的本數n的變化而變化.
4.冷凍一個0℃的物體,使它每分鐘下降2℃.物體的溫度t(℃)隨冷凍時間t(分)的變化而變化.
答應:1.根據圓的周長公式可得:l=2 r.
2.依據密度公式p= 可得:m=7.8v.
3.據題意可知: h=0.5n.
4.據題意可知:t=-2t.
我們觀察這些函數關系式,不難發現這些函數都是常數與自變量乘積的形式,和y=200x的形式一樣.
一般地,形如y=kx(k是常數,k≠0)的函數,叫做正比例函數(proportional func-tion),其中k叫做比例系數.
【正比例函數教學設計】相關文章:
《正比例函數》教學反思06-28
正比例函數教學反思07-04
正比例函數的教學反思05-26
正比例函數教學課件03-31
正比例函數的教學反思12-08
關于正比例函數的教學反思06-29
《正比例函數》優秀教學反思06-28
有關正比例函數的教學反思05-21
《正比例函數》教案06-10