來自等比數列的概念教學設計
作為一名老師,通常會被要求編寫教學設計,借助教學設計可以更好地組織教學活動。那么寫教學設計需要注意哪些問題呢?以下是小編整理的來自等比數列的概念教學設計,歡迎大家分享。
【教學目標】
知識目標:正確理解等比數列的定義,了解公比的概念,明確一個數列是等比數列的限定條件,能根據定義判斷一個數列是等比數列,了解等比數列在生活中的應用。
能力目標:通過對等比數列概念的歸納,培養學生嚴密的思維習慣;通過對等比數列的研究,逐步培養學生觀察、類比、歸納、猜想等思維能力并進一步培養學生善于思考,解決問題的能力。
情感目標:培養學生勇于探索、善于猜想的學習態度,實事求是的科學態度,調動學生的積極情感,主動參與學習,感受數學文化。
【教學重點】
等比數列定義的歸納及運用。
【教學難點】
正確理解等比數列的.定義,根據定義判斷或證明某些數列是否為等比數列
【教學手段】
多媒體輔助教學
【教學方法】
啟發式和討論式相結合,類比教學.
【課前準備】
制作多媒體課件,準備一張白紙,游標卡尺。
【教學過程】
【導入】
復習回顧:等差數列的定義。
創設問題情境,三個實例激發學生學習興趣。
1.利用游標卡尺測量一張紙的厚度.得數列a,2a,4a,8a,16a,32a.(a>0)
2.一輛汽車的售價約15萬元,年折舊率約為10%,計算該車5年后的價值。得到數列15 ,15×0.9 ,15×0.92 ,15×0.93 ,…,15×0.95。
3.復利存款問題,月利率5%,計算10000元存入銀行1年后的本利和。得到數列10000×1.05,10000×1.052,…,10000×1.0512.
學生探究三個數列的共同點,引出等比數列的定義。
【新課講授】
由學生根據共同點及等差數列定義,自己歸納等比數列的定義,再由老師分析定義中的關鍵詞句,并啟發學生自己發現等比數列各項的限制條件:等比數列各項均不為零,公比不為零。
等差數列:
一般地,如果一個數列從第二項起,每一項減去它的前一項所得的差都等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用d表示.數學表達式:an+1-an=d
等比數列:
一般地,如果一個數列從第二項起,每一項與它的前一項的比都等于同一個常數,那么這個數列就叫做等比數列,這個常數叫做等比數列的公比,通常用q表示.數學表達式:an?1 an?q
知曉定義的基礎上,帶領學生看書p29頁,書上前面出現的關于等比數列的實
例。讓學生了解等比數列在實際生活中的應用很廣泛,要認真學好。
在學生對等比數列的定義有了初步了解的基礎上,講解例一。給出具體的數列,會利用定義判斷是否為等比數列。對(1)(5)兩小題著重分析.
例題一
判斷下列數列是否為等比數列?若是,找出公比;不是,請說明理由.
(1) 1, 4, 16, 32.
(2) 0, 2, 4, 6, 8.
(3) 1,-10,100,-1000,10000.
(4) 81, 27, 9, 3, 1.
(5) a, a, a, a, a.
講解例二,進一步熟悉定義,根據定義求數列未知項。最后的小例一為了由利
用定義的求解轉到利用定義證明,二為了讓學生發現等比數列隔項同號的規律。
例題二
求出下列等比數列中的未知項:
(1) 2, a, 8;
(2) -4, b, c, ?;
已知數列2, x, d, y,8.是等比數列
①證明數列2, d, 8.仍是等比數列.
②求未知項d.
通過兩道例題的講解,讓學生有個緩沖,做個鞏固練習。當然此練習的安排,
也是為了進一步挖掘等比數列定義的本質,辨析找尋等差數列與等比數列的關系,將具體問題再推廣到一般,并要求學生理解并掌握等比數列的判斷證明方法。
練習
判斷下列數列是等差數列還是等比數列?
(1) 22 , 2 , 1 , 2-1, 2-2 .
(2) 3 , 34 , 37, 310 .
引申:已知數列{an}是等差數列,而bn?2n
證明數列{bn}是等比數列。
由最后一例的證明,說明給出通項公式后可由定義判斷該數列是否為等比數列。反過來若數列已經是等比數列了,能否由定義導出數列通項公式呢?為下節課做鋪墊。
【課堂小結】
由學生通過一堂課的學習,做個簡單的歸納小結。
1理解.等比數列的定義,判斷或證明數列是否為等比數列要用定義判斷
2.等比數列公比q≠0,任意一項都不為零.
3.學習等比數列可以對照等差數列類比做研究.
【作業】
1.書p48. No.1,2; a
【來自等比數列的概念教學設計】相關文章:
等比數列的前n項和教學反思12-20
等比數列的前n項和教學反思12-20
《等比數列》說課稿12-23
等比數列的前n項和說課稿11-04
新概念英語教學課件09-22
來自沙漠的堅強12-22
絕招的教學設計01-10
英語的教學設計12-29
絕招的教學設計01-10
英語的教學設計12-29