抽屜原理教學設計(優選10篇)
作為一位無私奉獻的人民教師,很有必要精心設計一份教學設計,教學設計是一個系統化規劃教學系統的過程。那要怎么寫好教學設計呢?以下是小編幫大家整理的抽屜原理教學設計,歡迎大家借鑒與參考,希望對大家有所幫助。
抽屜原理教學設計 1
教材簡析:
《抽屜原理》是義務教育課程標準實驗教科書數學六年級下冊第五單元數學廣角的教學內容。這部分教材通過幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”,使學生在理解“抽屜原理”這一數學方法的基礎上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決。“抽屜原理”在生活中運用廣泛,學生在生活中常常能遇到實例,但并不能有意識地從數學的角度來理解和運用“抽屜原理”。教學中應有意識地讓學生理解“抽屜原理”的“一般化模型”。
學情分析:
六年級學生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經驗,很容易感受到用“抽屜原理”解決問題帶來的樂趣。激趣是新課導入的抓手,喜歡和好奇心比什么都重要,游戲,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內容變為學生感興趣又易于理解的內容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現了新課標要求。
教學目標:
1、使學生初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。
2、使學生經歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發現、歸納、總結原理。
3、使學生通過“抽屜原理”的靈活應用感受數學的魅力;提高解決問題的能力和興趣。
教學重點:
經歷“抽屜原理”的`探究過程,初步了解“抽屜原理”。
教學難點:
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程:
一、課前游戲,導入新課。
游戲請5名同學到前面來,老師這有4張凳子,老師喊123開始,要求每位同學都必須坐在凳子上,引導:5位同學坐在4張椅子上,不管怎么坐,總有一把凳子上至少坐兩個同學。
我們剛才做了個小游戲,但小游戲蘊含著一個有趣的數學原理。今天我們就來研究這個有趣的數學原理——抽屜原理。
[設計意圖:把抽象的數學知識與生活中的游戲有機結合起來,使教學從學生熟悉和喜愛的游戲引入,讓學生在已有生活經驗的基礎上初步感知抽象的“抽屜原理”,提高學生的學習興趣。]
二、通過操作,探究新知
(一)活動一
1、出示題目:把4根小棒,放在3個杯子里,怎么放?有幾種不同的放法?
(板書:小棒4杯子3)
提出要求:把所有的擺法都擺出來,看看你會有什么發現?
(1)同桌之間互相合作,動手擺,把各種情況記錄下來。
(2)指名一位同學展示不同擺法,教師板書。(4,0,0)(3,1,0)(2,2,0)(2,1,1),(3)引導學生觀察發現:不管怎么放,總有一個杯子里至少有2根小棒。(板書:總有一個杯子里至少有)
(4)師生共同理解“總有”“至少”有2枝什么意思?
(5)明確:剛才同學們把所有擺法一一列舉出來,得到了這樣的結論,我們稱之為“枚舉法”。
[設計意圖:學生通過自己動手操作,在實驗中、合作中、討論中發現規律,分析問題的形成,把動腦思考與動手操作相結合,獨立思考與小組合作相結合。讓同學之間互相幫助,相互提高,讓問題在學生的探究中得到解決。]
2、要把6根小棒放進5杯子里,你感覺會有什么結果呢?
(1)啟發學生猜想結果
把6根小棒放入五個杯子里,你感覺一下,不要動手擺,你感覺一下會有什么樣的結論?
(2)引導學生選擇合適的方法
提出要求:想一個快速而又簡單的方法,只擺一種情況,你就可以得到這個結論?
(3)學生嘗試操作驗證。
(4)全班交流,操作演示。
學生活動后組織交流:先每個杯子擺一根,每個杯子放1跟,5個杯子,就已經放了5根,還有1根不管怎么放,總有一個杯子至少有兩根小棒
預設:如遇到每個杯子擺兩根,有的杯子空的,這樣有說服力嗎?有的杯子還空著,要先把每個杯子都裝上小棒才行。
(5)明確結論:把6根小棒放進5個杯子里,不管怎么放,總有一個杯子里至少有2枝小棒。
3、課件出示:
把100根小棒放進99個杯子呢?
談話:要不要也準備100根小棒和99根杯子呢?可以怎么辦?
引導用假設法進行思考:假設每個杯子放1跟,99個杯子,就已經放了99根,還有1根不管怎么放,總有一個杯子至少有2根小棒。
這也是數學中一種很重要的方法“假設法”。
引導學生觀察小棒數和杯子數,你有什么發現?
明確:這里的小棒數都比杯子數多1,當小棒數比杯子數多1時,總有一個杯子至少放了兩根小棒。
[設計意圖:注意鼓勵學生運用已有的知識對新學習的內容進行聯想和猜測,再通過實驗和推理驗證,培養學生良好的學習和思考習慣。在猜測的基礎上進行實驗和推理,從“枚舉法”到“假設法”,使學生受到研究方法和思維方式的訓練,發展和提高自主學習的能力。]
(二)活動二
談話:接下來,我們把數學書當做物體數放入抽屜里,看看又有什么發現?
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
板書:書抽屜總有一個抽屜放入算式
5235÷2=2……1
抽屜原理教學設計 2
教學目標:
1.知識與能力目標:
經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數學活動,建立數學模型,發現規律。滲透“建模”思想。
2.過程與方法目標:
經歷從具體到抽象的探究過程,提高學生有根據、有條理地進行思考和推理的能力。
3.情感、態度與價值觀目標:
通過“抽屜原理”的靈活應用,提高學生解決數學問題的能力和興趣,感受到數學文化及數學的魅力。
教學重點:
經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學準備:
教具:5個杯子,6根小棒;學具:每組5個杯子,6根小棒。
教學過程:
一、游戲激趣,初步體驗。
師:同學們,你們玩過撲克牌嗎?下面我們用撲克牌來玩個游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學上來各抽一張,我們來驗證一下。如果再請五位同學來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊藏著一個非常有趣的數學原理,想不想研究啊?
二、操作探究,發現規律。
(一)經歷“抽屜原理”的探究過程,理解原理。
1.研究小棒數比杯子數多1的情況。
師:今天這節課我們就用小棒和杯子來研究。板書:小棒杯子
師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?
學生分組操作,并把操作的結果記錄下來。
請一個小組匯報操作過程,教師在黑板上記錄。
師:觀察這所有的擺法,你們發現總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。
師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發現?
學生分組操作,并把操作的結果記錄下來。
請一個小組代表匯報操作過程,教師在黑板上記錄。
師:觀察所有的擺法,你發現了什么?這里的“總有”是什么意思?“至少”又是什么意思?
師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結果?
師:怎樣驗證猜測的結果對不對,你又什么好方法?引導學生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結果:6÷5=1……1
師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結果呢?你又從中發現了什么規律呢?
師:我們發現了小棒的數量比杯子的數量多1,總有一個杯子里至少有2根小棒。那如果小棒的數量比杯子的數量多2、多3,又會有什么樣的結果呢?
2、研究小棒數比杯子數多2、多3的情況。
師:如果把5根小棒放在3個杯子里,會有什么結果?
引導:先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?
師:把7根小棒放在3個杯子里,會有什么結果呢?為什么?
3、研究小棒數比杯子數的2倍多、3倍多…等情況。
師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結果?
小組內討論,再請同學說結果和理由。
4、總結規律。
師:我們將小棒看做物體、把杯子看做抽屜,你發現了什么規律?
總結:把m個物體放在n個抽屜里(m﹥n),總有一個抽屜至少有“商+1”個物體。
5、介紹抽屜原理。
“抽屜原理”又稱“鴿巢原理”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。
三、應用“抽屜原理”,感受數學的魅力。
1、把5本書放進2個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?為什么?
先思考:這里是把什么看做物體?什么看做抽屜?再說結果和理由。
2、8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?
3、向東小學六年級共有370名學生,其中六(2)班有49名學生。請問下面兩人說的對嗎?為什么?
(1)六年級里至少有兩人的生日是同一天。
(2)六(2)班中至少有5人是同一個月出生的。
4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環。張叔叔至少有一鏢不低于9環。為什么?
5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學的抽屜原理來解釋嗎?
四、全課小結。
說一說:今天這節課,我們又學習了什么新知識?(師生共同對本節課的內容進行小結)
五、布置作業。
課本73頁練習十二第2、4題。
六、板書設計。
數學廣角——抽屜原理
物體數÷抽屜數= 商……余數 至少數 =商+1
小棒 杯子 總有一個杯子里至少有
3 2 2
4 3 2
6 ÷ 5 = 1……1 2
5 ÷ 3 = 1……2 2
7 ÷ 4 = 1……3 2
9 ÷ 4 = 2……1 3
15 ÷ 4 = 3……3 4
教學反思:
1、通過游戲,激發興趣。
興趣是最好的老師。課前我設計了從52張撲克牌(去掉2張王牌)中任意抽取5張,老師肯定地說:至少有2張牌是同一花色的,在學生半信半疑時,師生共同游戲,讓學生信服,但又不知道其中奧妙,這樣導入,學生興趣盎然。
2、操作探究,建立模型。
本節課充分放手,讓學生自主思考,采用自己的方法“證明”:“把4根小棒放入3個杯子里,不管怎么放,總有一個杯子里至少有2根小棒”,然后交流展示,為后面開展教與學的活動做了鋪墊。此處設計注意了從最簡單的數據開始擺放,有利于學生觀察、理解,有利于調動所有的學生積極性。在有趣的類推活動中,引導學生得出一般性的結論,讓學生體驗和理解“抽屜原理”的最基本原理,當物體個數大于抽屜個數時,一定有一個抽屜中放進了至少2個物體。這樣的教學過程,從方法層面和知識層面上對學生進行了提升,有助于發展學生的類推能力,形成比較抽象的數學思維。在評價學生各種“證明”方法,針對學生的不同方法教師給予針對性的鼓勵和指導,讓學生在自主探索中體驗成功,獲得發展。在學生自主探索的基礎上,進一步比較優化,讓學生逐步學會運用一般性的數學方法來思考問題。在這一環節的.教學中抓住了假設法最核心的思路就是用“有余數除法” 形式表示出來,使學生借助直觀,很好的理解了如果把物體盡量多地“平均分”給各個抽屜里,看每個抽屜里能分到多少,余下的不管放到哪個抽屜里,總有一個抽屜里比平均分得的數量多1。特別是對“某個抽屜至少有的數量”是除法算式中的商加“1”,而不是商加“余數”,教師適時挑出針對性問題進行交流、討論,使學生從本質上理解了“抽屜原理”。
3、解釋應用,深化知識。
學了“抽屜原理”有什么用?能解決生活中的什么問題,這就要求在教學中要注重聯系學生的生活實際。在應用“抽屜原理”,感受數學的魅力環節里,我設計了一組簡單、真實的生活情境,讓學生用學過的知識來解釋這些現象,有效的將學生的自主探究學習延伸到課外,體現了“數學來源于生活,又還原于生活”的理念。
教學永遠是一門遺憾的藝術。
反思本節課的教學,有以下幾點不足:
1、在把3根小棒放進2個杯子,把4根小棒放進3個杯子里,都讓學生進行了操作并做了記錄,但對學生的有序思考重視不夠,導致課堂檢測時,學生用列舉法解決問題的時候,有兩個同學把所有的可能都列舉對了,但不是有序排列的。還有兩個差一點的學生由于思維無序,因此沒能正確列舉出來。
2、在把5根小棒放在3個杯子里,有學生出現了總有一個杯子里至少有3根小棒的結論,可能是用5÷3=1……2,1+2=3,也就是很多同學容易出的錯誤:用商+余數。這時老師沒有抓住這個同學思維中的錯誤制造思維矛盾,因此感覺學生對總有一個抽屜至少有的數量=商+1這一知識點的理解還不夠透徹。
3學生在用“抽屜原理” 解決實際問題時,書寫格式教師指導不到位。有些題目是要先說結論,再說理由。那么說理由的時候,有的同學只列了算式,如:5÷3=1……2,1+1=2,還有的同學先列算式,再回答問題。在區教研室周俊主任的指導下,我才明白這類題目的書寫格式是:因為5÷3=1(根)……2(根),1+1=2(根),所以每個杯子里至少有2根小棒。
總的說來,本節課學生的學習效果還不錯,全班學生針對這類問題都能快速做出正確分析與判斷。我也算圓滿完成了這節課的學習目標,實現了三維目標的有機整合。
抽屜原理教學設計 3
【知識技能】
1.理解最簡單的抽屜原理及抽屜原理的一般形式。
2.引導學生采用操作的方法進行枚舉及假設法探究。
【過程方法】
經歷抽屜原理的探究過程,初步了解抽屜原理。
【情感態度價值觀】
體會數學知識在日常生活中的廣泛應用,培養學生的探究意識和能力。
【教學重、難點】經歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
【教學過程】
一、問題引入。
師:同學們,你們玩過搶椅子的游戲嗎?現在,老師這里準備了3把椅子,請4個同學上來,誰愿來?
1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現實生活中存在著的一種現象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。
二、探究新知
(一)教學例1
1.出示題目:有4枝鉛筆,3個盒子,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的`放法?
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
問題:4個人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。4支筆放進3個盒子里呢?
引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
(1)“總有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)
教師引導學生總結規律:我們把4枝筆放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現了這個結論。那么,你們能不能找到一種更為直接的方法得到這個結論呢?
學生思考并進行組內交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?……你發現什么?(筆的枝數比盒子數多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)
抽屜原理教學設計 4
教學內容
人教版標準試驗教材小學數學六年制第十二冊“數學廣角”例
1、例2及相關內容。
教材編排特點
1、教材借助例1(把4枝鉛筆放進3個文具盒)中的操作情境,介紹了一類較簡單的“抽屜問題”。學生在操作實物的過程中可以發現一個現象:不管怎么放,總有一個文具盒里至少放進2枝鉛筆,從而產生疑問,激起尋求答案的欲望。在這里,“4枝鉛筆”就是“4個要分放的物體”,“3個文具盒”就是“3個抽屜”,這個問題用“抽屜問題”的語言來描述就是:把4個物體放進3個抽屜,總有一個抽屜至少有2個物體。
為了解釋這一現象,教材呈現了兩種思考方法。第一種方法是用操作的方法進行枚舉。通過直觀地擺鉛筆,發現把4枝鉛筆分配到3個文具盒中一共只有四種情況(在這里,只考慮存在性問題,即把4枝鉛筆不管放進哪個文具盒,都視為同一種情況)。在每一種情況中,都一定有一個文具盒中至少有2枝鉛筆。通過羅列實驗的所有結果,就可以解釋前面提出的疑問。為了對這類“抽屜問題”有更深的理解,教材在“做一做”中安排了一個“鴿巢問題”,只是數據比例題的稍大。學生可以利用例題中的方法遷移類推,加以解釋。
2、例2介紹了另一種類型的“抽屜問題”,即“把多于個的物體任意分放進個空抽屜(是正整數),那么一定有一個抽屜中放進了至少(+1)個物體。”實際上,如果設定=1,這類“抽屜問題”就變成了例1的形式。因此,這兩類“抽屜問題”在本質上是一致的,例1只是例2的一個特例。教材提供了讓學生把5本書放進2個抽屜的情境,在操作的過程中,學生發現不管怎么放,總有一個抽屜至少放進3本書,從而產生探究原因的愿望。學生仍然可以采用枚舉的方法,把5分解成兩個數,有(5,0),(4,1),(3,2)三種情況。在任何一種結果中,總有一個數不小于3。更具一般性的仍然是假設的方法,即先把5本書“平均分成2份”。利用有余數除法5÷2=21可以發現,如果每個抽屜放進2本,還剩1本。把剩下的這1本放進任何一個抽屜,該抽屜里就有3本書了。
研究了“把5本書放進2個抽屜”的問題后,教材又進一步提出“如果一共有7本書,9本書,情況會怎樣?”的問題,讓學生利用前面的方法進行類推,得出“7本書放進2個抽屜,總有一個抽屜至少放進4本書,9本書放進2個抽屜,總有一個抽屜至少放進5本書”的結論。
在此基礎上,讓學生觀察這幾個“抽屜問題”的特點,尋找規律,使學生對這一類“抽屜原理”達到一般性的理解。例如,學生可以通過觀察,歸納出“要把(是奇數)本書放進2個抽屜,如果÷2=1,那么總有一個抽屜至少有(+1)本書”的一般性結論。教材第69頁的“做一做”延續了第68頁“做一做”的情境,在例2的基礎上有所擴展,把 “抽屜數”變成了3,要求學生在例2思考方法的基礎上進行遷移類推。
設計理念
興趣是最好的老師,喜歡和好奇心比什么都重要,以“搶座位”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作、動手操作的探究性學習和“鴿子進巢”模擬想象事情情景的發生把抽屜原理較為抽象難懂的內容變為學生感興趣又易于理解的內容,從而牽引出“平均分”這個更具一般性的方法。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現了新課標要求。
教材內容分析
《抽屜原理》是義務教育課程標準實驗教科書數學六年級下冊第五單元數學廣角的教學內容。這部分教材通過幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”,使學生在理解“抽屜原理”這一數學方法的基礎上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決。在數學問題中有一類與“存在性”有關的問題,在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明是通過什么方式把這個存在的物體(或人)找出來。這類問題依據的理論,我們稱之為“抽屜原理”。“抽屜原理”最先是由19世紀的德國數學家狄里克雷(Dirichlet)運用于解決數學問題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。“抽屜原理”的理論本身并不復雜,甚至可以說是顯而易見的。例如,要把三本書放進兩個抽屜,至少有一個抽屜里有兩本書。這樣的道理對于小學生來說,也是很容易理解的。但“抽屜原理”的應用卻是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。因此,“抽屜原理”在數論、集合論、組合論中都得到了廣泛的應用。
本單元用直觀的方式,介紹了“抽屜原理”的兩種形式。例1描述的是最簡單的“抽屜原理”——把
個物體任意分放進個空抽屜里(>,是非0自然數),那么一定有一個抽屜中放進了至少2個物體。例2描述了“抽屜原理”更為一般的形式:把多于
個物體任意分放進個空抽屜里(是正整數),那么一定有一個抽屜中放進了至少(+1)個物體。
教學對象分析
“抽屜原理”在生活中運用廣泛,學生在生活中常常能遇到實例,但并不能有意識地從數學的角度來理解和運用“抽屜原理”。教學中應有意識地讓學生理解“抽屜原理”的“一般化模型”。六年級學生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經驗,很容易感受到用“抽屜原理”解決問題帶來的樂趣。
教學目標
(1).經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
(2).通過操作發展學生的類推能力,形成比較抽象的數學思維。
(3).通過“抽屜原理”的靈活應用感受數學的魅力。
教學重難點
重點:經歷“抽屜原理”的.探究過程,初步了解“抽屜原理”。
難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教具、學具準備
若干個紙杯、筆、撲克牌
教學策略
“抽屜原理”應用很廣泛且靈活多變,可以解決一些看上去很復雜、覺得無從下手,卻又是相當有趣的數學問題。但對于小學生來說,理解和掌握“抽屜原理”還存在著一定的難度。所以,在本節課的教學中我根據學生的認知特點和規律,在設計時我主要運用了產生式教學策略中的數感教學策略和應用意識教學策略兩種方式,著眼于開拓學生視野,激發學生興趣,提高解決問題的能力,通過動手操作、小組活動等方式組織教學。
一、游戲激趣,初步體驗抽屜原理。
創設貼近學生生活實際的情景。情境中激發興趣,興趣是最好的老師。課前“搶椅子”的小游戲,簡單卻能真實的反映“抽屜原理”的本質。通過小游戲,一下就抓住學生的注意力,讓學生覺得這節課要探究的問題,好玩又有意義。再充分利用學生已有的經驗學習數學。
二、討論交流,操作探究,尋找抽屜原理的一般規律。
這一環節我利用提出問題——驗證結論——解決問題——初步建模——運用假設法——發現規律——介紹課外知識等數學活動,引導學生探究抽屜原理的一般規律。
1、提出問題:(1)把3本書、4支筆分別放進2個抽屜、3個文筆筒中,不管怎么放,總有一個抽屜(筆筒)至少放進幾本(幾枝)。讓學生猜測“至少會是”幾支?
2、驗證結論:不管學生猜測的結論是什么,都要求學生借助實物進行操作,來驗證結論。學生以小組為單位進行操作和交流時,教師深入了解學生操作情況,找出列舉所有情況的學生并板書。
(1)先請列舉所有情況的學生進行匯報,一說明列舉的不同情況,二結合操作說明自己的結論。(教師根據學生的回答板書所有的情況)
學生匯報完后,教師再利用多媒體課件,指出每種情況中都有幾支鉛筆被放進了同一個文具盒。
(2)參與教學策略。由問題產生的參與,是思維的參與。教師充分發揮學生的主觀能動性,創設豐富生動、富有挑戰性的生活情境,激發學生參與的興趣,通過問題激發學生主動參與學習活動,積極參與思考、討論、動手實踐、嘗試練習,真正做學習的主人。如利用“鴿巢原理”中鴿子的聰明和機智一一占巢以及同學搶座位的做法讓學生自然而然想到抽屜原理和“平均分”有著非常緊密的聯系,再結合前面學生的動手操作驗證平均分的的作用。
(3)合作教學策略。合作策略是指通過教師與學生之間,尤其是學生與學生之間的共同合作,達到某一預期的教學目標。小組學習活動是合作教學中最基本、最常用的形式。培養學生合作交流的習慣是非常重要的。
教學過程
一、課前游戲引入。
上課前,我們先來熱身一下,請五位同學一起來玩“搶座位”的游戲。5人搶4個位置,說開始后每人必須坐在位置上。你們先想像一下他們可能的坐后的情景,看老師猜的對不對。
他們都坐下了么?老師不用看就知道“一定有一把椅子上坐了兩個同學,對不對?假如請這五位同學再坐,不管怎么坐,總有一張椅子至少坐兩個同學,同意么?板書:總有 至少
其實這里蘊含了一個有趣的數學原理,是什么原理呢,它里面又有什么需要我們去探討呢?
二、通過操作,探究新知
(一)探究例1
1、研究3本書放進2個抽屜里。
(1)要把3 本書放進2個抽屜,有幾種放法?請同學們想一想,同桌擺一擺,再把你的想法在小組內交流。(提醒學生左2右一與左1右2是同一種方法)
(2)反饋:兩種放法:板書(3,0)和(2,1)
(3)觀察這兩種放法,同學們有什么發現呢?(總有一個抽屜至少放有2本書)讓孩子們充分地說(仿照搶座位來說)。板書:總有一個抽屜至少放有2本書。
(4)“總有”什么意思?你能用另外一個詞代替它(一定有)(5)“至少”有2本什么意思?(最少是2本,2本或者2本以上)小結:這就是數學上著名的 “抽屜原理”。即把東西放入抽屜里,怎么放,出現什么現象。
2、研究4枝筆放進3個杯子。
(1)現要把4枝筆放進3個杯子里,有幾種放法?請同學們4人一小組動手擺一擺,再把你的想法在小組內交流。
(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。多媒體依照學生回答展示放的情況,并把放有2枝或2枝以上的杯子用紅線圈出。
(3)從這四種放法,同學們有什么發現?(總有一個杯子至少放有2枝筆)(4)小結:同學們在研究4枝筆放入3個杯子里是也得出了相同的結論。那么你能用抽屜原理告訴老師這里有幾個抽屜嗎?其實,數學上又把“抽屜原理”叫做“鴿巢原理”。(5)多媒體出示4個鴿巢 5只鴿子
問:鴿子的進巢情況會怎樣,還有前面的結論嗎? 學生想象一下鴿子回巢的情景,小組討論進巢的實際現象。
(6)引導學生根據前面搶座位游戲,再結合聰明的鴿子進巢情景模擬試驗,說明“抽屜原理”也就是“鴿巢原理”和“平均分”有關(突破難點)。由平均分引出除法算式。
(7)師生總結:如要能一眼看出擺放結果,利用平均分(除法算式)比列舉法要簡單、明了、方便的多
(8)學生用除法算式表示前面游戲和3個活動。叫生板演。
3、(1)把6枝筆放進5個杯子,是不是總有一個杯子至少有2枝筆?為什么?
把7枝筆放進6個杯子,是不是總有一個杯子至少有2枝筆?為什么?
把100枝筆放進99個杯子,是不是總有一個杯子至少有2枝筆?為什么?(2)從剛才我們的探究活動中,你有什么發現?小組交流。匯報:只要放的筆比杯子的數量多1,總有一個杯子里至少放進2枝筆。提示學生用字母表示N+1個筆放進N個杯子里,總有一個杯子里至少有兩枝筆。
(3)如果筆數比杯子數多2呢?多3呢?是不是也能得到結論:“總有一個杯子至少有2枝筆。”擺一擺,說一說。
(4)小結:剛才我們分析了把筆放進杯子的情況,只要筆數量多于杯子數量時,總有一個杯子至少放進2枝筆。
(5)如果7只鴿子飛進5個鴿巢,情況怎樣呢?8只呢(多媒體出示)同桌交流,匯報,(6)寫出除法算式,總結結論。
(二)探究例2
1、研究把5本書放進2個抽屜中。(1)多媒體出示 5本書 2個抽屜 會有幾種放置情況?學生動手放并反饋(5,0)、(4,1)和(3,2)
(2)從三種情況中,我們可以得到怎樣的結論呢?(每一種放法里總有一個抽屜至少放進了3本書)
(3)最能一眼看出結論的是哪種方法:即先在每個抽屜里放進2本書,剩下的1本書放進任何一個抽屜中,這個抽屜就有3本書了。也就是平均分,用算式表示是:5÷2=2.1(商2表示什么,余數1表示什么)
2、類推:如果把7本書放進2個抽屜中,總有一個抽屜至少放進4本書。
如果把9個本書放進2個抽屜中。總有一個抽屜至少放5本書。
如果把11本書放進3個抽屜中。至少有一個抽屜放進4本書。
3、板書算式后提問:現在你們又有什么發現,放置結果的至少數又有什么規律?小組討論后互相說說并匯報結論。得出;
至少數 = 商+1 問:如果沒有余數結論是什么(至少數 =商)
這就是今天我們學習的“抽屜原理”的一個小奧秘。經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,個個都是了不起的數學家。其實“ 抽屜原理”最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。(多媒體顯示抽屜原理的來歷)
4、在我們的生活中,常常會遇到抽屜原理,如課前我們玩的游戲。
5、小結:從以上的學習中,我們發現在解決抽屜原理時,我們是把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數多1。)
三、遷移與拓展
下面我們一起來放松一下,做個小游戲。
(1)我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?任意抽出來的五張至少有幾張是同一種顏色的?
(2)在我們班的任意13人中,總有至少幾個人的屬相相同,想一想,為什么?
(3)六(1)班有學生55人,我們可以肯定,在這55人中,至少有 人的生日在同一個月?想一想,為什么?
(4)多媒體出示:數學家波沙童年的故事。
匈牙利現代數學家厄爾迪斯說過這樣一句名言:“數學家就是將咖啡變為定理的機器。”
有一次厄爾迪斯聽說本國有個9歲的神童叫波沙,他便專程到布達佩斯去看他。見面后,他問波沙:“從1、2、3...100中任意取51個不相同的數,其中必有兩個互質,這是為什么?” 波沙正在喝咖啡,他用湯匙在杯子里攪了幾下,然后就輕松地回答了這個看似簡單卻又難以回答的問題:“將1、2、3...100分成50個組,每組兩個相鄰的數為1,2|3,4|...|99,100|。如果每組中各取一個數,那么至多只能取出50個數。因此如果取出51個數,那么必有一組的兩個數都被取出。而每兩個相鄰的自然數互質,因此取出的51個數中必有兩個數互質。
這里就運用到了我們今天所學的抽屜原理的相關知識。這節課你有哪些收獲呢?
老師對你們利用抽屜原理解決實際問題充滿了信心,希望你們再接再厲!
四、總結全課
五、布置作業。
2、做一做:(出示幻燈片)
(1)張叔叔參加飛鏢比賽投了5鏢,成績是41環。張叔叔至少有一鏢不低于9環。這是為什么?
(2)某班有32名小朋友是在8月份出生的,能否找到兩個在同一天過生日的小朋友?為什么?
(3)小明和小剛擲色子,小明說:“我擲了7次,至少有2次點數相同。”小明說得對嗎?為什么?
(六)板書設計
抽屜原理
總有(一個抽屜)至少放有:商+1
3÷2=1(本)1(本)2(3,0)(2,1)4÷3=1(枝)1(枝)2(4,0,0)(3,1,0)
2(2,2,0)(2,1,0)
5÷4=1(只)1(只)2 7÷5=1(只)2(只)2 8÷5=1(只)3(只)2 5÷2=2(本)1(本)3 7÷2=3(本)1(本)4 9÷2=4(本)1(本)5 11÷3=3(本)2(本)4
至少數=商+1
抽屜原理教學設計 5
【教學內容】
《義務教育課程標準實驗教科書數學》六年級下冊第68頁。
【教學目標】
1.經歷抽屜原理的探究過程,初步了解抽屜原理,會用抽屜原理解決簡單的實際問題。
2. 通過操作發展學生的類推能力,形成比較抽象的數學思維。
3. 通過抽屜原理的靈活應用感受數學的魅力。
【教學重點】
經歷抽屜原理的探究過程,初步了解抽屜原理。
【教學難點】
理解抽屜原理,并對一些簡單實際問題加以模型化。
【教具、學具準備】
每組都有相應數量的盒子、鉛筆、書。
【教學過程】
一、課前游戲引入。
師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)
師:聽清要求 ,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的情況,但是我敢肯定地說:不管怎么坐,總有一把椅子上至少坐兩個同學我說得對嗎?
生:對!
師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。下面我們開始上課,可以嗎?
二、通過操作,探究新知
(一)教學例1
1.出示題目:有3枝鉛筆,2個盒子,把3枝鉛筆放進2個盒子里,怎么放?有幾種不同的放法?
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況 (3,0) (2,1)
【點評】此處設計教師注意了從最簡單的數據開始擺放,有利于學生觀察、理解,有利于調動所有的學生積極參與進來。
師:5個人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。3支筆放進2個盒子里呢?
生:不管怎么放,總有一個盒子里至少有2枝筆?
是:是這樣嗎?誰還有這樣的發現,再說一說。
師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)
師:誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況。
(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1),
師:還有不同的放法嗎?
生:沒有了。
師:你能發現什么?
生:不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:總有是什么意思?
生:一定有
師:至少有2枝什么意思?
生:不少于兩只,可能是2枝,也可能是多于2枝?
師:就是不能少于2枝。(通過操作讓學生充分體驗感受)
師:把3枝筆放進2個盒子里,和把4枝筆飯放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現了這個結論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論呢?
學生思考組內交流匯報
師:哪一組同學能把你們的想法匯報一下?
組1生:我們發現如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。
師:你能結合操作給大家演示一遍嗎?(學生操作演示)
師:同學們自己說說看,同位之間邊演示邊說一說好嗎?
師:這種分法,實際就是先怎么分的?
生眾:平均分
師:為什么要先平均分?(組織學生討論)
生1:要想發現存在著總有一個盒子里一定至少有2枝,先平均分,余下1枝,不管放在那個盒子里,一定會出現總有一個盒子里一定至少有2枝。
生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?
師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結合操作,說一說)
師:哪位同學能把你的想法匯報一下,
生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把6枝筆放進5個盒子里呢?還用擺嗎?
生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把7枝筆放進6個盒子里呢?
把8枝筆放進7個盒子里呢?
把9枝筆放進8個盒子里呢?
:
你發現什么?
生1:筆的枝數比盒子數多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:你的發現和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。
【點評】教師關注了抽屜原理的最基本原理,物體個數必須要多于抽屜個數,化繁為簡,此處確實有必要提領出來進行教學。在學生自主探索的基礎上,教師注意引導學生得出一般性的結論:只要放的鉛筆數盒數多1,總有一個盒里至少放進2支。通過教師組織開展的扎實有效的教學活動,學生學的有興趣,發展了學生的類推能力,形成比較抽象的數學思維。
2.解決問題。
(1)課件出示:5只鴿子飛回4個鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?
(學生活動獨立思考 自主探究)
(2)交流、說理活動。
師:誰能說說為什么?
生1:如果一個鴿籠里飛進一只鴿子,最多飛進4只鴿子,還剩一只,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。
生2:我們也是這樣想的。
生3:把5只鴿子平均分到4個籠子里,每個籠子1只,剩下1只,放到任何一個籠子里,就能保證至少有2只鴿子飛進同一個籠里。
生4:可以用54=11,余下的1只,飛到任何一個鴿籠里都能保證至少有2只鴿子飛進一個個籠里,所以,至少有2只鴿子飛進同一個籠里的結論是正確的。
師:許多同學沒有再擺學具,證明這個結論是正確的,用的什么方法?
生:用平均分的方法,就能說明存在總有一個鴿籠至少有2只鴿子飛進一個個籠里。
師:同意嗎?(生:同意)老師把這位同學說的算式寫下來,(板書:54=11)
師:同位之間再說一說,對這種方法的理解。
師:現在誰能說說你對總有一個鴿籠里至少飛進2只鴿子的理解
生:我們發現這是必然存在的一個現象,不管鴿子怎樣飛回鴿籠,一定會有一個鴿籠里至少有2只鴿子。
師:同學們都有這個發現嗎?
生眾:發現了。
師:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的.思維也在不知不覺中提升了許多,那么讓我們再來看這樣一組問題。
(二)教學例2
1.出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
(留給學生思考的空間,師巡視了解各種情況)
2.學生匯報。
生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
板書:5本 2個 2本 余1本 (總有一個抽屜里至有3本書)
7本 2個 3本 余1本(總有一個抽屜里至有4本書)
9本 2個 4本 余1本(總有一個抽屜里至有5本書)
師:2本、3本、4本是怎么得到的?生答完成除法算式。
52=2本1本(商加1)
72=3本1本(商加1)
92=4本1本(商加1)
師:觀察板書你能發現什么?
生1:總有一個抽屜里的至少有2本只要用 商+ 1就可以得到。
師:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
生:總有一個抽屜里的至少有3本只要用53=1本2本,用商+ 2就可以了。
生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。
師:到底是商+1還是商+余數呢?誰的結論對呢?在小組里進行研究、討論。
交流、說理活動:
生1:我們組通過討論并且實際分了分,結論是總有一個抽屜里至少有2本書,不是3本書。
生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結論是總有一個抽屜里至少有2本書。
生3∶我們組的結論是5本書平均分放到3個抽屜里,總有一個抽屜里至少有2本書用商加1就可以了,不是商加2。
師:現在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?
生4:如果書的本數是奇數,用書的本數除以抽屜數,再用所得的商加1,就會發現總有一個抽屜里至少有商加1本書了。
師:同學們同意吧?
師:同學們的這一發現,稱為抽屜原理, 抽屜原理又稱鴿籠原理,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱狄里克雷原理,也稱為鴿巢原理。這一原理在解決實際問題中有著廣泛的應用。抽屜原理的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
3.解決問題。71頁第3題。(獨立完成,交流反饋)
小結:經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。
三、應用原理解決問題
師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?
生:2張/因為54=11
師:先驗證一下你們的猜測:舉牌驗證。
師:如有3張同花色的,符合你們的猜測嗎?
師:如果9個人每一個人抽一張呢?
生:至少有3張牌是同一花色,因為94=21
抽屜原理教學設計 6
教學內容:
人教版六年級下冊第五單元數學廣角
教學目標:
1、初步了解“抽屜原理”。
2、引導學生用操作枚舉或假設的方法探究“抽屜原理”的一般規律。
3、會用抽屜原理解決簡單的實際問題。
4、經歷從具體的抽象的探究過程,初步了解抽屜原理,提高學生又根據有條理的進行思考和推理的能力,體會比較的學習方法。
教學重點:
抽屜原理的理解和簡單應用。
教學難點:
找出實際問題與抽屜原理的內在聯系。
教學過程:
一、開展小游戲,引入新課。
師:在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?
師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩位同學”我說得對嗎?
生:對!
師:想知道老師為什么會做出如此準確的判斷嗎?其實這里面蘊含著一個有趣的數學原理——抽屜原理。
二、實驗探索
第一步:研究4枝鉛筆放進3個文具盒,有哪些不同的放法?你們又能從這些方法中發現什么有趣的現象?
1、(出示)師:把4枝筆放進3個文具盒,有哪些不同的放法?(請一生示范)你們又能從這些放法中發現什么有趣的現象?
2、師:接下來,就請同學們以小組為單位進行實驗操作,并把放法和發現填在記錄卡上。
放法
文具盒1
文具盒2
文具盒3
最多放幾枝
A
B
C
D
我們的發現
3、小組匯報交流。
(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)
生:不管怎么放,總有1個文具盒里至少有2枝鉛筆。
師:“總有”是什么意思?
生:一定有。
師:“至少”是什么意思?
生:不少于2枝,可能是3枝或4枝。
生小結:把4枝鉛筆放進3個文具盒,總有一個文具盒至少放進2枝鉛筆。(最多有2枝或2枝以上)
4、師:把4枝筆飯放進3個文具盒里,不管怎么放,總有一個文具盒里至少有2枝鉛筆。這是我們通過實際操作發現了這個結論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論,找出至少數呢?
生:我們發現如果每個文具盒里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個文具盒里,總有一個文具盒里至少有2枝鉛筆。
(學生操作演示)
師:這種分法,實際就是先怎么分的?
生眾:平均分
師:為什么要先平均分?
生1:要想發現存在著“總有一個文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那個文具盒里,一定會出現“總有一個文具盒里一定至少有2枝”。
生2:這樣分,只分一次就能確定總有一個文具盒至少有幾枝筆了。
把筆盡量每個文具盒里都放,還要盡量平均放。怎樣用算式表示呢?
4÷3=1……11+1=2
5、那照這樣的思路:把6枝鉛筆放進5個文具盒,怎樣想?(用鉛筆操作演示)6÷5=1……11+1=2
把7枝鉛筆放進6個文具盒,怎樣想?……
100枝鉛筆放進99個文具盒呢?
師提問:發現了什么規律?
生小結,師整理:鉛筆數比文具盒數多1,不管怎么放,總有一個文具盒里至少放進2枝鉛筆。(同桌之間說一說)
第二步:研究鉛筆數比文具盒數不是多1的現象。
1、師:研究到這兒,還想繼續研究嗎?還有哪些值得我們繼續研究的問題?(生自主提問:如不是多1,什么是抽屜原理等等。)
2、師:如果鉛筆數比文具盒數不是多1,而是多2、3……,總有一個文具盒里至少會有幾枝鉛筆?
(出示:把5本書放進2個抽屜里,總有一個抽屜里至少會有幾本書呢?)
生獨立思考,在小組內交流,匯報。
師:許多同學都沒有再擺學具,用的`什么方法?
生:平均分。把5本書平均分到2個抽屜里,每個抽屜里放2本書,還剩一本書,無論放在哪個抽屜里,總有一個抽屜里至少有3本書。生:5÷2=2……12+1=3
(出示:5本書放進3個抽屜呢?8本書放進5個抽屜呢?)
5÷3=1……21+1=28÷5=1……31+3=4
師:至少數為什么不是“商+余數”?(小組討論,匯報)
4、對比觀察算式,你能發現求至少數的規律嗎?
物體數÷抽屜數=商……余數至少數=商+1
5、總結抽屜原理,運用抽屜原理的關鍵是什么?(找準物體數和抽屜數),閱讀相關資料。
a÷n=b……c(c≠0)把a個物體放進n個抽屜里,總有一個抽屜里至少放進(b+1)個物體。
三、應用原理。
1、請你試一試。(口答,指出什么是物體數,什么是抽屜數)
(1)6只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一鴿舍,為什么?
(2)把13只小兔關在5個籠中,至少有幾只兔子要關在同一個籠里?
(3)有5袋餅干,每袋10快,發給6個小朋友,總有一個小朋友至少分到幾塊餅干?
2、下面的說法對嗎?說說你的理由。
向東小學6年級共有370名學生,其中六(2)班有49名學生。
A、六年級里至少有2名學生的生日是同一天。
(370個物體,366個抽屜)
B、六(2)班只有5名學生的生日在同一月。
(49個物體,12個抽屜,“只有”就是一定)
C、六(2)至少有25位學生是同一性別。
3、玩“猜撲克”的游戲。
抽掉大小王,抽出5張牌,至少幾張是同花色?5÷4=1……11+1=2
抽15張至少有幾張數字相同?15÷13=1……21+1=2
4、學生把學生生活中能用抽屜原理解釋的現象寫下來。
留心觀察+細心思考=偉大發現
四、全課總結。
抽屜原理教學設計 7
教學目標:
1.使學生能理解抽取問題中的一些基本原理,并能解決有關簡單的問題。
2.體會數學與日常生活的聯系,了解數學的價值,增強應用數學的意識。
教學重點:
抽取問題。
教學難點:
理解抽取問題的基本原理。
教學過程:
一、創設情境,復習舊知
1、出示復習題:
師:老師這兒有一個問題,不知道哪位同學能幫助解答一下?
2、課件出示:把3個蘋果放進2個抽屜里,總有一個抽屜至少放2個蘋果,為什么?
3、學生自由回答。
二、教學例2
1、出示:盒子里有同樣大小的紅球和藍球各4個。要想摸出的球一定有2個同色的,最少要摸出幾個球?
(1)組織學生讀題,理解題意。
教師:你們能猜出結果嗎?
組織學生猜一猜,并相互交流。
指名學生匯報。
學生匯報時可能會答出:只摸4個球就可以了,至少要摸出5個球……
教師:能驗證嗎?
教師拿出準備好的紅球及藍球,組織學生到講臺前來動手摸一摸,驗證匯報結果的正確性。
(2)教師:剛才我們通過驗證的.方法得出了結論,聯系前面所學的知識,這是一個什么問題?
2、組織學生議一議,并相互交流。再指名學生匯報。
教師:上面的問題是一個抽屜問題,請同學們找一找:“抽屜”是什么?“抽屜”有幾個?
組織學生議一議,并相互交流。
指名學生匯報,使學生明確:抽屜就是顏色數。(板書)
教師:能用例1的知識來解答嗎?
組織學生議一議,并相互交流。
指名學生匯報。
使學生明確:只要分的物體比抽屜多,就能保證總有一個抽屜至少放蕩2個球,因此要保證摸出兩個同色的球,摸出球的數量至少要比顏色的種數多一。
(3)組織學生對例題的解答過程議一議,相互交流,理解解決問題的方法。
學生不難發現:只要摸出的球比它們的顏色種數多1,就能保證有兩個球同色。
3、做一做
第1題。
1、獨立思考,判斷正誤。
2、同學交流,說明理由。其中“370名學生中一定有兩人的生日是同一天”與例1中的“抽屜原理”是一類,“49名學生中一定有5人的出生月份相同”則與例2的類型相同。教師要引導學生把“生日問題”轉化成“抽屜問題”。因為一年中最多有366天,如果把這366天看作366個抽屜,把370個學生放進366個抽屜,人數大于抽屜數,因此總有一個抽屜里至少有兩個人,即他們的生日是同一天。而一年中有12個月,如果把這12個月看作12個抽屜,把49個學生放進12個抽屜,49÷12=4……1,因此,總有一個抽屜里至少有5(即4+1)個人,也就是他們的生日在同一個月。
三鞏固練習
完成課文練習十二第1、3題。
四、總結評價
1、師:這節課你有哪些收獲或感想?
五、布置作業
1.做一做。把紅、黃、藍三種顏色的小棒各10根混在一起。如果讓你閉上眼睛,每次最少拿出幾根才能保證一定有2根同色的小棒?保證有2對同色的小棒呢?
2.試一試。給下面每個格子涂上紅色或藍色。觀察每一列,你有什么發現?如果只涂兩列的話,結論有什么變化呢?
3、拓展練習(選做)
(1)任意給出5個非0的自然數。有人說一定能找到3個數,讓這3個數的和是3的倍數。你信不信?
(2)把1~8這8個數任意圍成一個圓圈。在這個圈上,一定有3個相鄰的數之和大于13。你知道其中的奧秘嗎?
抽屜原理教學設計 8
教學目標:
1.知識與能力:初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。
2.過程和方法:經歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發現、歸納、總結原理。
3.情感與價值:通過“抽屜原理”的靈活應用感受數學的魅力;提高同學們解決問題的能力和興趣。
教學重點:
經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程:
一、創設情景
導入新課
師:同學們喜歡玩游戲嗎?講臺前面有6張凳子,請7位同學來搶凳子坐。我不看同學們怎樣坐,我敢肯定的說:這6張凳子中總有一張凳子至少有兩個同學同坐,大家相信嗎?(師生演示)
師:想知道老師為什么能做出如此準確的判斷嗎?這其中蘊含一個有趣的數學原理——抽屜原理。(板書課題)這節課我們就一起來研究這個數學原理。
師:通過今天的'學習,你想知道些什么?
二、自主操作
探究新知
(一)活動一課件出示:把4枝鉛筆放到3個筆筒里,可以怎么放?師:你們擺擺看,會有什么發現?把你們發現的結果用自己喜歡的方式記錄下來。
1、學生動手操作,師巡視,了解情況。
2、匯報交流說理活動
①師:有什么發現?誰能說說看?
師根據學生的回答用數字在黑板上記錄。板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)師:你們是這樣記錄的嗎?
師:還可以用圖記錄。我把用圖記錄的用課件展示出來。師:還可以用表格記錄。師板書在黑板上。 ②再認真觀察記錄,還有什么發現?
板書:不管怎樣放,總有一個筆筒里至少有2枝鉛筆。
③怎樣擺可以一次得出結論?(啟發學生用平均分的擺法,引出用除法計算。)板書:4÷3=1(枝)1(枝)
④師:這種方法是不是很快就能確定總有一個筆筒里至少有幾枝鉛筆呢?(學生交流)
⑤把5枝鉛筆放進4個筆筒里呢?還用擺嗎?板書:5÷4=1(枝)1(枝)
⑥課件出示:把6枝鉛筆放進5個筆筒呢?把7枝鉛筆放進6個筆筒呢?把10枝鉛筆放進9個筆筒呢?把100枝鉛筆放進99個筆筒呢?板書:7÷6=1(枝)1(枝)10÷9=1(枝)1(枝)100÷99=1(枝)1(枝)
⑦觀察這些算式你發現了什么規律?預設學生說出:至少數=商+余數
師:是不是這個規律呢?我們來試一試吧!
3、深化探究得出結論
課件出示:5只鴿子飛回3個鴿籠,至少有兩只鴿子要飛進同一個鴿籠里,為什么?
①學生活動
②交流說理活動
預設:生1:題目的說法是錯誤的,用商加余數,應該至少有3只鴿子要飛進同一個鴿籠。
生2:不同意!不是“商加余數”是“商加1”.
③師:到底是“商加余數”還是“商加1”?誰的結論對呢?在小組里進行研究、討論。
④師:誰能說清楚?板書:5÷3=1(只)2(只)至少數=商+1
(二)活動二
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
1、分組操作后匯報
板書:5÷2=2(本)1(本)7÷2=2(本)1(本)9÷2=2(本)1(本)
2、那么探究到現在,大家認為怎樣才能確定總有一個抽屜至少有幾本書?生:至少數=商+1
3、師:我同意大家的討論。我們這個發現就是有趣的“抽屜原理
”,(點題)。“抽屜原理”又稱“鴿籠原理”,最先是由19世紀德國數學家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實際問題中有著廣泛的應用。用它可以解決許多有趣的問題,讓我們來試試好嗎?
三、靈活應用
解決問題
1、解釋課前提出的游戲問題。
2、課件出示:8只鴿子飛回3個鴿舍,不管怎樣分,總有一個鴿舍至少有幾只鴿子?
3、課件出示:任意13人中,至少有兩人的出生月份相同。為什么?
4、課件出示:任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?
四、暢談感受
教學結束
同學們,今天這節課有什么感受?(抽生談談,師總結。)在這堂課中,我首先設計(搶凳子游戲,講臺前面有6張凳子,請7位同學來搶凳子坐。我不看同學們怎樣坐,我敢肯定的說:這6張凳子中同學們不管怎樣坐,總有一張凳子至少有兩個同學同坐,大家相信嗎?)目的一:小孩子最喜歡玩游戲,一說玩游戲,調動了學生學習的積極性;目的二:激發學生思考什么是抽屜原理,對解決這類問題有什么作用?
接著出示:把4枝鉛筆放到3個筆筒里,可以怎么放?我讓學生用自己喜歡的方法動手操作、匯報、板書,得出結論,又提出:怎樣擺可以一次得出結論?小組討論,然后針對他們的方法進行講解(邊操作邊講解),其實這方法是用平均分的擺法,引出用除法計算。)板書:4÷3=1(枝)1(枝)得出預設學生說出:至少數=商+余數,讓學生有更深的認識,同時也讓他們了解平均分的擺法最好,為后面的學習打下鋪墊。
然后,出示活動二:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?先動手操作,同時用算式計算,看算式的規律是:發現是至少數=商+1接著我反問任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?這樣有利于學生的反向思維能力的鍛煉。
抽屜原理教學設計 9
【設計理念】
本課通過創設情境、直觀和實際操作,使學生進一步經歷“抽屜原理”的探究過程,并對一些簡單的實際問題“模型化”,從而在用“抽屜原理”加以解決的過程中,促進邏輯推理能力的發展,培養分析、推理、解決問題的能力以及探索數學問題的興趣,同時也使學生感受到數學思想方法的奇妙與作用,在數學思維的訓練中,逐步形成有序地、嚴密地思考問題的意識。
【教學內容】
《義務教育課程標準實驗教科書數學》六年級下冊第70--71頁的內容。
【教學目標】
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發展學生的類推能力,形成比較抽象的數學思維。
3.通過“抽屜原理”的靈活應用感受數學的魅力。
【教學重點】
經歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。
【教學難點】
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
【教學準備】
多媒體課件、每組準備13枚“金幣”和5個杯子。
【教學課時】
一課時
【教學過程】
一.創設情景,引入新課。
在研究新課之前得先請同學們見見自己的老朋友,看看誰還認識他?
出示圖片——魯濱遜畫像。
二.創設平臺,合作探究。
一).探索比抽屜數多1的至少數。
話說魯賓遜完全不顧父愿,甚至違抗父命,也全然不聽母親的懇求和朋友們的勸阻,一意孤行開始了他的冒險之旅。一天拂曉,當他所乘坐的正駛向加那利群島時,被一艘土耳其海盜船襲擊,所有船員全部被俘。魯賓遜被海盜船長作為自己的戰利品留了下來,成了船長的奴隸。這一日,海盜們沒有出海,懶洋洋的在岸上休息,船長命令魯賓遜給海盜們傳授些文明人的知識,讓海盜們變得像魯賓遜一樣富有智慧。看著桌子上閃閃發光的金幣,魯賓遜想到了一個辦法,他找來兩個盒子:
出示例一:
1.把3枚金幣放入2個盒子里,有幾種放法?
學生拿起自己手中的學具做實驗,小組討論后發言,其他同學可以補充。
如果每個盒子里最少放一枚,要使所有金幣都放進盒子里,不管怎么放,總有一個盒子里至少有幾枚金幣?
2.師:把4枚金幣都放進3個盒子里,有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)
師:誰來展示一下你擺放的情況?這種分法,實際就是先怎么分的?為什么要先平均分?(組織學生討論)
小結: 用最不利原則設想,如果我們先讓每個筆筒里放1枚金幣,最多放3枚。剩下的1枚還要放進其中的一個筆筒。所以不管怎么放,總有一個筆筒里至少放進2枚金幣。
二).探索比抽屜數多幾的至少數。
師:那么把13枚金幣放進3個盒子里呢?
(可以結合操作說一說)
師:把13枚金幣放進5個盒子里呢?
(留給學生思考的空間,師巡視了解各種情況)
師:這是我們通過實際操作現了這個結論。那么,我們能不能找到一種更為直接的方法,得到這個結論呢?請同學們觀察板書,小組研究、討論。找一找其中的規律。
小結:至少數等于數的本數除以抽屜數,再用所得的商加1。
(板書:至少數=商+1)
三).解析原理,加深認識
師:同學們的這一發現,稱為“抽屜原理”。抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱作“鴿巢原理”。
出示:7只鴿子飛回5個鴿舍,至少有兩只鴿子飛進同一個鴿舍?學生回答后觀看演示。
三.應用原理,解決問題。
一).鞏固應用一——撲克牌游戲
16世紀的海盜們哪能摸得清什么抽屜原理呢?一聽原理二字便昏頭漲腦,不知什么時候早在下面玩起了撲克牌。這時,魯賓遜靈機一動,將大家正玩的撲克牌中的大小王拿掉,說:每人抽五張牌,不管怎么抽取,至少有兩張是同一花色的牌,你們相信嗎?說著,給坐在旁邊的海盜甲海盜乙每人任意抽取了5張牌。“如果有一個人手里的牌都不是同一花色,任由船長處置;如果每個人手里最少有2張花色相同的牌,請船長允許我回故鄉赫爾去吧。”船長眼珠一轉,同意了魯賓遜的要求。
那么,事實是不是這樣呢?同學們相信魯賓遜的'話嗎?
教師發撲克牌,學生回答。
二).鞏固應用二——分寶1
魯賓遜雖然證實了自己是正確的,可是狡猾的船長并沒有答應他的要求,放他回家。魯賓遜只好跟著海盜首領到處掠奪殺戮。
有一次,他們獲得了很多寶貝,海盜首領非常高興,對手下8個小海盜說,這些寶貝都給你們了,你們自己處理吧,沒想到小海盜平時都搶慣了,一擁而上,有人拿得很多,有人很少,甚至有人一件寶貝也沒拿到,看到小海盜們亂哄哄的樣子,海盜首領非常生氣,就想懲罰一下那些貪婪的海盜,機會終于來了!有一次:海盜們又獲得了73件寶貝,海盜首領又叫8個小海盜自己分。且規定:1、必須分完。2、若某人拿10件或10件以上的寶貝,說明他是個過分貪婪的人,就把他扔進大海喂鯊魚。
海盜們是否都能逃過這一劫呢?小組討論后派代表說說想法,其他同學可以補充。無論怎樣分,總有一個海盜至少會拿到10件,這個海盜怎么辦呢?學生自由談看法。
師:正在海盜們擔心的時候,事情有了轉機,聰明的魯賓遜趁著天黑偷偷地把一件寶貝扔進大海,現在只剩下72件寶貝,大家都平安無事。
三).鞏固應用三——分寶2
師:海盜們終于逃過一劫,海盜首領回到自己屋里,悶悶不樂,夫人問他為什么不開心,海盜首領如實相告,夫人說是不是有人把一件寶貝扔到海里去了,海盜首領如夢方醒,決心下一次不再上當,又是在一個風急天黑的夜晚:海盜們獲得了79件寶貝,首領還是要8個小海盜自己分,規則不變,還警告,79件寶貝已數得清清楚楚,誰要是作弊,也要受到懲罰。
師:小海盜們大驚失色,心想這下可能真的逃不過去了,只有聰明的魯賓遜鎮定自若,站出來對海盜首領說,既然寶貝比上次增加了6件,能不能把限定的10件提高1件?海盜首領心想,寶貝增加這么多,而限定只提高1件,還是肯定有人會受到懲罰,就同意了小海盜的請求。你認為首領的想法對嗎?說說你是怎樣想的。
學生先小組討論,然后再叫幾個學生來說說是怎樣想的。老師再對學生的思路進行梳理。
以上我們所碰到的問題是什么問題?他的解答或證明的方法是怎樣的?你能否找到被分的物品數和抽屜數?
師:靠著魯賓遜的聰明才智,事情終于風平浪靜,在以后的日子里魯賓遜自己的智慧贏得了海盜首領的信任,有了獨自駕駛小艇的權利,借著海盜首領拜訪朋友的機會,魯賓遜駕著小艇逃到了一個無人的荒島,并搭救了一個野蠻人,起名“星期五”,有一天,他們倆無所事事,玩起了游戲。
四).鞏固應用4——摸球游戲
他們用一個盒子,里面裝有同樣大小數量相同的紅、黃、藍球各若干個,兩人各自摸到自己的盤子里,想一想,最少要摸幾次,才能保證一定有2個是同色的?
讓學生講講思路,老師再對學生的思路進行梳理。
四.拓展延伸
魯賓遜的故事今天先講到這里,通過今天的學習你有什么收獲?
五.布置作業
每人編2道抽屜類問題作為今天的作業,讓自己的同桌來證明或解答。
抽屜原理教學設計 10
一、教學目標
知識與技能目標
學生能夠理解抽屜原理的基本概念,經歷抽屜原理的探究過程。
初步掌握運用抽屜原理解決一些簡單實際問題的方法。
過程與方法目標
通過操作、觀察、分析、推理等活動,提高學生的邏輯思維能力和解決問題的能力。
培養學生的數學建模思想和歸納推理能力。
情感態度與價值觀目標
激發學生對數學的學習興趣,感受數學的魅力。
讓學生體會數學與生活的緊密聯系,培養學生應用數學的意識。
二、教學重難點
重點
經歷抽屜原理的'探究過程,理解抽屜原理的基本原理。
掌握運用抽屜原理解決實際問題的方法。
難點
理解 “至少” 的含義,對一些實際問題進行數學建模并運用抽屜原理求解。
三、教學方法
講授法:清晰地講解抽屜原理的概念和規則。
小組合作探究法:讓學生通過小組合作進行實踐操作和討論,共同探索抽屜原理。
啟發式教學法:通過提問引導學生思考,逐步深入理解原理。
四、教學過程
(一)導入環節
展示生活中的例子:如把 5 個蘋果放進 4 個抽屜里,總有一個抽屜里至少放了 2 個蘋果。引導學生思考為什么會出現這種情況,激發學生的好奇心和探究欲。
(二)探究新知
活動一:把 4 支鉛筆放進 3 個筆筒中。
讓學生以小組為單位進行實際操作,把不同的放法記錄下來。
請各小組匯報放法,教師進行板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
引導學生觀察并思考:不管怎么放,總有一個筆筒里至少有幾支鉛筆?通過分析得出總有一個筆筒里至少有 2 支鉛筆。
活動二:深入探究原理。
引導學生用數學的方法進行分析,假設每個筆筒先放 1 支鉛筆,剩下的 1 支無論放在哪個筆筒,都會出現有一個筆筒里有 2 支鉛筆的情況。
引出抽屜原理的一般表述:把 n + 1 個物體放進 n 個抽屜里,總有一個抽屜里至少有 2 個物體。
(三)例題講解
例 1:教室里有 13 名同學,至少有幾名同學的生日在同一個月?
分析:一年有 12 個月,把 13 名同學看作 13 個 “物體”,12 個月看作 12 個 “抽屜”。
解答:根據抽屜原理,13÷12 = 1……1,1 + 1 = 2,所以至少有 2 名同學的生日在同一個月。
例 2:把 7 本書放進 3 個抽屜,不管怎么放,總有一個抽屜里至少放進幾本書?
先讓學生思考討論,然后解答。7÷3 = 2……1,2 + 1 = 3,所以總有一個抽屜里至少放進 3 本書。
(四)鞏固練習
練習一:8 只鴿子飛回 3 個鴿舍,至少有幾只鴿子要飛進同一個鴿舍?
練習二:11 個蘋果放在 4 個盤子里,總有一個盤子里至少放幾個蘋果?
讓學生獨立完成練習,教師巡視指導,之后進行全班交流和訂正。
(五)課堂小結
引導學生回顧抽屜原理的內容,強調 “至少” 的含義和解決問題的方法。
請學生分享自己在本節課中的收獲和體會。
(六)布置作業
基礎作業:課后練習題第 1、2 題。
拓展作業:找出生活中可以用抽屜原理解釋的現象,并記錄下來。
【抽屜原理教學設計】相關文章:
《抽屜原理》教學設計02-13
《抽屜原理》教學設計03-09
抽屜原理教學設計11-09
抽屜原理教學設計06-27
抽屜原理教學設計11-09
抽屜原理教學設計優秀04-13
《抽屜原理》教學設計優秀06-17
《抽屜原理》教學設計優秀02-22
抽屜原理優秀教學設計02-22
抽屜原理優秀教學設計04-11