初中數學教學設計
作為一位不辭辛勞的人民教師,常常要寫一份優秀的教學設計,教學設計把教學各要素看成一個系統,分析教學問題和需求,確立解決的程序綱要,使教學效果最優化。那么應當如何寫教學設計呢?下面是小編為大家收集的初中數學教學設計,歡迎閱讀,希望大家能夠喜歡。
初中數學教學設計1
教材與學情:
解直角三角形的應用是在學生熟練掌握了直角三角形的解法的基礎上進行教學,它是把一些實際問題轉化為解直角三角形的數學問題,對分析問題能力要求較高,這會使學生學習感到困難,在教學中應引起足夠的重視。
信息論原理:
將直角三角形中邊角關系作為已有信息,通過復習(輸入),使學生更牢固地掌握(貯存);再通過例題講解,達到信息處理;通過總結歸納,使信息優化;通過變式練習,使信息強化并能靈活運用;通過布置作業,使信息得到反饋。
教學目標:
⒈認知目標:
⑴懂得常見名詞(如仰角、俯角)的意義
⑵能正確理解題意,將實際問題轉化為數學
⑶能利用已有知識,通過直接解三角形或列方程的方法解決一些實際問題。
⒉能力目標:培養學生分析問題和解決問題的能力,培養學生思維能力的靈活性。
⒊情感目標:使學生能理論聯系實際,培養學生的對立統一的觀點。
教學重點、難點:
重點:利用解直角三角形來解決一些實際問題
難點:正確理解題意,將實際問題轉化為數學問題。
信息優化策略:
⑴在學生對實際問題的探究中,神經興奮,思維活動始終處于積極狀態
⑵在歸納、變換中激發學生思維的靈活性、敏捷性和創造性。
⑶重視學法指導,以加速教學效績信息的順利體現。
教學媒體:
投影儀、教具(一個銳角三角形,可變換圖2-圖7)
高潮設計:
1、例1、例2圖形基本相同,但解法不同;這是為什么?學生的思維處于積極探求狀態中,從而激發學生學習的積極性和主動性
2、將一個銳角三角形紙片通過旋轉、翻折等變換,使學生對問題本質有了更深的認識
教學過程:
一、復習引入,輸入并貯存信息:
1.提問:如圖,在Rt△ABC中,∠C=90°。
⑴三邊a、b、c有什么關系?
⑵兩銳角∠A、∠B有怎樣的關系?
⑶邊與角之間有怎樣的關系?
2.提問:解直角三角形應具備怎樣的.條件:
注:直角三角形的邊角關系及解直角三角形的條件由投影給出,便于學生貯存信息
二、實例講解,處理信息:
例1.(投影)在水平線上一點C,測得同頂的仰角為30°,向山沿直線 前進20為到D處,再測山頂A的仰角為60°,求山高AB。
⑴引導學生將實際問題轉化為數學問題。
⑵分析:求AB可以解Rt△ABD和
Rt△ABC,但兩三角形中都不具備直接條件,但由于∠ADB=2∠C,很容易發現AD=CD=20米,故可以解Rt△ABD,求得AB。
⑶解題過程,學生練習。
⑷思考:假如∠ADB=45°,能否直接來解一個三角形呢?請看例2。
例2.(投影)在水平線上一點C,測得山頂A的仰角為30°,向山沿直線前進20米到D處,再測山頂A的仰角為45°,求山高AB。
分析:
⑴在Rt△ABC和Rt△ABD中,都沒有兩個已知元素,故不能直接解一個三角形來求出AB。
⑵考慮到AB是兩直角三角形的直角邊,而CD是兩直角三角形的直角邊,而CD均不是兩個直角三角形的直角邊,但CD=BC=BD,啟以學生設AB=X,通過 列方程來解,然后板書解題過程。
解:設山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、歸納總結,優化信息
例2的圖開完全一樣,如圖,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,則需解Rt△ABD例2中∠2≠2∠1求AB,則利用CD=BC-BD,列方程來解。
四、變式訓練,強化信息
(投影)練習1:如圖,山上有鐵塔CD為m米,從地上一點測得塔頂C的仰角為∝,塔底D的仰角為β,求山高BD。
練習2:如圖,海岸上有A、B兩點相距120米,由A、B兩點觀測海上一保輪船C,得∠CAB=60°∠CBA=75°,求輪船C到海岸AB的距離。
練習3:在塔PQ的正西方向A點測得頂端P的
仰角為30°,在塔的正南方向B點處,測得頂端P的仰角為45°且AB=60米,求塔高PQ。
教師待學生解題完畢后,進行講評,并利用教具揭示各題實質:
⑴將基本圖形4旋轉90°,即得圖5;將基本圖形4中的Rt△ABD翻折180°,即可得圖6;將基本圖形4中Rt△ABD繞AB旋轉90°,即可得圖7的立體圖形。
⑵引導學生歸納三個練習題的等量關系:
練習1的等量關系是AB=AB;練習2的等量關系是AD+BD=AB;練習3的等量關系是AQ2+BQ2=AB2
五、作業布置,反饋信息
《幾何》第三冊P57第10題,P58第4題。
板書設計:
解直角三角形的應用
例1已知:………例2已知:………小結:………
求:………求:………
解:………解:………
練習1已知:………練習2已知:………練習3已知:………
求:………求:………求:………
解:………解:………解:………
初中數學教學設計2
一、學情分析
八年級學生具有強烈的好勝心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理
二、教材分析
這節課是人教版八年級第十八章第一節的內容,教學內容是勾股定理公式的推導、證明及其簡單的應用。本節課是在學生已經掌握了直角三角形有關性質的基礎上進行學習的,勾股定理是幾何中最重要的定理之一,它揭示的是直角三角形中三條邊之間的數量關系,將數與形密切聯系起來,為以后學習四邊形、圓、解直角三角形等數學知識奠定了基礎。它有著豐富的歷史背景,在數學的發展中起著重要的作用,在現實生活中也有著廣泛的應用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
三、教學目標設計
知識與技能
探索勾股定理的內容并證明,能夠運用勾股定理進行簡單計算和運用
過程與方法
(1)通過觀察分析,大膽猜想,探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。
(2)在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學過程,并體會數形結合和從特殊到一般的思想方法情感態度與價值
(1)在探索勾股定理的過程中,培養學生的合作交流意識和探索精神,增進數學學習的信心,感受數學之美,探究之趣。
(2)利用遠程教育資源介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。
四、教學重點難點
教學重點
探索和證明勾股定理
教學難點
用拼圖的方法證明勾股定理
五、教學方法
(學法)“引導探索法”
(自主探究,合作學習,采用小組合作的方法。
六、教具準備
課件、三角板
七、教學過程設計
教學環節1
教學過程:創設情境探索新知
教師活動:出示第24屆國際數學家大會的會徽的圖案向學生提問
(1)你見過這個圖案嗎?
(2)你聽說過“勾股定理”嗎?
學生活動:
學生思考回答
設計意圖:目的在于從現實生活中提出“趙爽弦圖”,進一步激發學生積極主動地投入到探索活動中,同時為探索勾股定理提供背景材料。
教學環節
教學過程:
實驗操作獲取新知歸納驗證完善新知
教師活動:出示課件,引導學生探索
學生活動:猜想實驗合作交流畫圖測量拼圖驗證
設計意圖:滲透從特殊到一般的數學思想.為學生提供參與數學活動的時間和空間,發揮學生的主體作用;讓學生自己動手拼出趙爽弦圖,培養他們學習數學的成就感。通過拼圖活動,使學生對定理的理解更加深刻,體會數學中的.數形結合思想,調動學生思維的積極性,激發學生探求新知的欲望.給學生充分的時間與空間討論、交流,鼓勵學生敢于發表自己的見解,感受合作的重要性。教學環節3教學過程:解決問題應用新知
教師活動:出示例題和練習
學生活動:交流合作,解決問題
設計意圖:通過運用勾股定理對實際問題的解釋和應用,培養學生從身邊的事物中抽象出幾何模型的能力,使學生更加深刻地認識數學的本質:數學來源于生活,并能服務于生活,順利解決如何將實際問題轉化為求直角三角形邊長的問題,培養學生的數學應用意識.
教學環節4
教學內容:
課堂小結
鞏固新知布置作業
教師活動:引導學生小結
學生活動:討論交流、自由發言
設計意圖:既引導學生從面積的角度理解勾股定理,又從能力、情感、態度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅.
通過布置課外作業,給學生留有繼續學習的空間和興趣,及時獲知學生對本節課知識的掌握情況,適當的調整教學進度和教學方法,并對學習有困難的學生給與指導.
八、板書設計
勾股定理:如果直角三角形的兩直角邊分別為a和b,斜邊為c,那么a2+b2=c2。
九、習題拓展
如圖,將長為10米的梯子AC斜靠在墻上,BC長為6米。(1)求梯子上端A到墻的底端B的距離AB。
(2)若梯子下部C向后移動2米到C1點,那么梯子上部A向下移動了多少米?
十、作業設計
1、收集有關勾股定理的證明方法,下節課展示、交流.
2、做一棵奇妙的勾股樹(選做)
初中數學教學設計3
一、教學內容
跳繩比賽:求總和問題,求相差多少的問題,屬人教版一年級數學下冊第二單元中的知識。
二、教學目標
1、使學生能夠正確解決簡單的數學問題,初步學會列式解答求總和問題與相差多少的問題。
2、培養學生積極參與數學學習活動的態度,對數學有好奇心和求知欲。
3、初步認識到數學與人類生活的密切聯系,培養學生應用數學的意識。
三、教學重點:
運用數學思想,在實踐中解決問題
四、教學難點:
學會收集數學信息,用正確的方法來解決問題
五、教具準備:自制多媒體課件
六、教學過程:
出示主題圖,練習中的一個題目:
(1)明確條件和問題,理解題意
(2)選擇有效的`信息來解決問題
第一個問題:要用到題目中的哪些信息?要用什么數學方法來解答?第二個問題:要用到題目中的哪些信息?又要用什么數學方法來解答?
七、回顧總結,強化解決問題的策略和步驟
我們解決問題時,第一步要通過看圖、看文字弄清楚知道了什么,問題是什么;第二步要弄清楚哪些信息和問題有關系,學會選擇合適的信息解決問題;第三步要找到正確的方法解決問題。
初中數學教學設計4
【教學目標】
使學生知道數軸上有原點、正方向和單位長度,能將已知數在數軸上表示出來,能說出數軸上的已知點所表示的數,知道有理數都可以用數軸上的點表示;向學生滲透對立統一的辯證唯物主義觀點及數形結合的數學思想。【內容簡析】
本節課是數軸的第一課時,在學生學了有理數概念的基礎上,從標有刻度的溫度計來表示溫度高低這個事實出發引出數軸畫法和用數軸上點表示數的方法,可以使學生借助圖形的直觀來理解有理數的有關問題,突出知識的產生過程,也為以后學習實數奠定基礎。本節的重點是掌握數軸的概念和畫法,明確其三要素缺一不可。數軸上的點與有理數的對應關系的理解是難點。教學中要求學生多動手,增強對“形”的感性認識,培養動手、動腦和實際操作能力。【流程設計】
一、情景創設
溫度計的用途是什么?類似于這種用帶有刻度的物體表示數的東西還有哪些(直尺、彈簧秤等)?
數學中,在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零。
二、新知探索
1.請學生閱讀新課思考:
①零上25℃用正數_____表示。0℃用數____表示;零下10℃用負數_____表示。②數軸要具備哪三個要素?
③原點表示什么數?原點右方表示什么數?原點左方表示什么數? ④表示+2的點在什么位置?表示-3的點在什么位置?
⑤原點向右0.5個單位長度的a點表示什么數?原點向左11個單位長度的b點表示什么數?
2.數軸的畫法
師生共同總結數軸的畫法步驟:
第一步:畫一條直線(通常是水平的直線),在這條直線上任取一點o,叫做原點,用這點表示數0;(相當于溫度計上的`0℃。)
第二步:規定這條直線的一個方向為正方向(一般取從左到右的方向,用箭頭表示出來)。相反的方向就是負方向;(相當于溫度計0℃以上為正,0℃以下為負。)
第三步:適當地選取一條線段的長度作為單位長度,也就是在0的右面取一點表示1,0與1之間的長就是單位長度。(相當于溫度計上1℃占1小格的長度。)
在數軸上從原點向右,每隔一個單位長度取一點,這些點依次表示1,2,3,?,從原點向左,每隔一個單位長度取一點,它們依次表示–1,–2,–3,?。
3.數軸的定義:規定了原點、正方向和單位長度的直線叫做數軸。
原點、正方向和單位長度是數軸的三要素,原點位置的選定、正方向的取向、單位長度大小的確定,都是根據需要認為規定的。直線也不一定是水平的。
三、范例共做
例1:判斷下圖中所畫的數軸是否正確?如不正確,指出錯在哪里? 分析:原點、正方向、單位長度這數軸的三要素缺一不可。解答:都不正確,
(1)缺少單位長度;
(2)缺少正方向;
(3)缺少原點;
(4)單位長度不一致。
例2:把下面各小題的數分別表示在三條數軸上:
(1)2,-1,0,?32,+3.5(2)-5,0,+5,15,20;
(3)-1500,-500,0,500,1000。
分析:要在數軸上表示數,首先要正確畫出數軸,標明原點、正方向(一般從左到右為正方向)和單位長度這三要素,然后再表示數,第(1)題,數不大,單位長度取1cm代表1,第(2)、(3)題數軸較大,可取1cm分別代表5和500。數軸上原點的位置要根據需要來定,不一定要居中,如第(1)題的原點可居中,(2)的原點可偏左,(3)的原點可偏右,單位長度也應根據需要來確定,但在同一條數軸上,單位長度不能變。表示某個數的點,在圖形上一定要用較大的“.”突出來,并且在數軸上寫出該點表示的數。這樣畫出的圖形較合理、美觀。
例3:借助數軸回答下列問題
(1)有沒有最小的正整數?有沒有最大的正整數?如果有,把它指出來;
(2)有沒有最小的負整數?有沒有最大的負整數?如果有,把它標出來。
解答:觀察數軸易知:
(1)有最小的正整數,它是1,沒有最大的正整數;
(2)沒有最小的負整數,有最大的負整數,它是-1. 例4:比較–3,0,2的大小。
分析一:先在數軸上分別找到表示–3、0、2的點,由“右邊的數總比左邊的數大”得到–3<0<2;
分析二:直接由“正數都大于0;負數都小于0;正數大于一切負數”的規律得出–3<0<2。
四、檢測反饋
1.判斷下圖中所畫的數軸是否正確?
2.下面數軸上的點a、b、c、d、e分別表示什么數?
3.將-
3、1.5、21、-
6、2.25、1、-
5、1各數用數軸上的點表示出來。224.畫一條數軸,并在上面標出下列的點。
±100
±200
±300 提示:1.圖(1)是數據標注錯誤;圖(2)的畫法是正確的,在以后的學習中會遇到。
五、小結提高
1.數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數與形之間的內在聯系;所有的有理數都可以用數軸上的點表示,但反過來并不是數軸上的所有點都表示有理數;
2.畫數軸時,原點的位置以及單位長度的大小可根據實際情況適當選取,注意不要漏畫正方向、不要漏畫原點,單位長度一定要統一,數軸上數的排列順序(尤其是負數)要正確。
六、課后思考
1.一個點從原點開始,按下列條件移動兩次后到達終點,說出它是表示什么數的點?(1)向右移動11個單位長度,再向左移動2個單位。2(2)向左移動3個單位長度,再向左移動2個單位長度。
2.數軸上表示3和-3的點 離開原點的距離是多少?這兩個點的位置有什么不同? 3.數軸上到原點的距離是5的點有幾個?它們分別表示什么數?
4.某數軸的單位長度是1cm,若在這個數軸上隨意畫一條長100cm的線段ab,則線段ab蓋住的整數點有()
a.99個或100個
b.100個或101個
c.99個或101個
d.99個、100個或101個
初中數學教學設計5
近年來,命題改革中加強對學生閱讀能力的考核,特別是閱讀理解題成了中考數學的新題不僅在各級各類的命題改革中加強對學生閱讀能力的考核,對數學閱讀教學提出了新的要求,而且從人的發展、人才的培養角度思考,也需要加強數學閱讀能力的培養。特別是閱讀理解題成了中考數學的新題型,具有很強的選拔功能。因此,在初中數學教學中,應當重視閱讀教學,充分利用閱讀的形式,加強數學閱讀能力的培養。
一、加強廣大師生對數學閱讀重要性的理解
數學教科書是專家在充分考慮學生生理心理特征、教育教學原理、數學學科特點等因素的基礎上精心編寫而成,具有極高的閱讀價值。數學教學活動中,數學閱讀是“人——本”對話的數學交流形式。在這種形式中,學生能通過教科書的標準語言來規范自己的數學用語,能有效地促進數學閱讀水平的發展,準確敘述解題過程中有關的觀點和進行嚴謹的邏輯推理。因此,數學閱讀不僅能促進學生數學語言水平的發展,而且有助于學生更好地掌握數學。另外,每年一度的中考試題中都設置了數學應用題,閱讀理解題,而學生每遇到應用題的問答便覺得困難重重,其主要原因是學生缺乏閱讀數學的方法。因此,數學教學有必要重視數學閱讀。
二、初中數學閱讀教學的教學原則
在初中數學教學中進行閱讀教學,應當遵循如下的教學原則:
1.主體性原則。從根本上承認和尊重受學生的主體性,使學生能動地參與到數學閱讀活動的全過程中來,將自己進行的閱讀活動作為意識對象,不斷對其進行積極的監控,調節;規劃閱讀進程,獨自獲得必要的信息和資料;不斷培養自我監控,自我調節的習慣,逐步學會探索地進行數學閱讀與數學學習。
2.差異性原則。學生在個體發展區、學習方式、知識基礎、思維品質等多種因素上的差異導致學生閱讀能力的差異。也決定了教師必須對不同層面學生給以不同的關注,在閱讀過程中,學生獨立閱讀的過程為教師提供了充足的課堂巡視時間,使教師能夠將統一學習變成個別指導,重點對個別閱讀能力較差進行指導。
3.內化性原則。內化的基本條件是對數學語言的感知水平,不僅包括對數學學科本身的概念、法則、定律、公式等的理解,而且包括學生的元認知水平的控制和調節。因此,在閱讀過程中要不斷地使學生充分實踐監控的各種具體策略和技能,進而逐步內化為自我監控能力,使其能在新的條件下,靈活運用這些策略和技能進行自我監控。
4.反饋性原則。個體的自我反饋,自我評價的意識和能力是至關重要的。教師應及時、準確、適當地對學生的自我監控做出評價,指導他們逐步學會對學習方法,策略運用及結果進行反饋和評價。同時,學生根據教師的指導,對自己的閱讀監控過程,所用的策略及結果進行調控和改進,不斷提高思維的抽象概括水平,從而不斷發展與完善自己的數學認知結構。
5.建構性原則。閱讀過程是數學建構的過程,是通過對數學材料進行部分與整體的交替感知去構建數學結構,領悟形式化運動的過程。在閱讀過程中學生主動探索,充分利用數學知識特有的邏輯性和數學內容的結構特點,不斷在課文的適當地方由上文做出猜想、估計,再通過與已知相對照,加以修正,從而獲得新知識。
三、實施數學閱讀教學的具體途徑
1.預習的閱讀指導
在課堂教學中存在這樣的現象:部分學生認為,沒有預習的必要,反正教師都要講,上課認真聽就是了。這是一種錯誤的認識。預習的作用主要表現在以下幾個方面:能提高學生聽課的效率,有利于他們更好地做課堂筆記;培養學生的自學能力;可以鞏固學生對知識的記憶。那么,怎樣指導學生預習呢?可以按如下步驟進行:首先選擇好預習的時間,指導學生迅速地瀏覽即將學習的教材,然后讓他們帶著問題詳細閱讀第二遍,并在閱讀過程中做好預習筆記,以便于接下來學生能有目的地聽課。
2.數學教材的閱讀指導
(1)閱讀目錄標題。目錄標題是課本的綱目,是每一章節的精華。閱讀目錄標題就等于了解了全文的框架結構。閱讀了課本內容就使目錄標題具體化了。逐步養成“標題聯想”的習慣。
(2)閱讀概念
我們所希望達到的指導效果是:讓學生在閱讀概念時能夠正確理解概念中的字、詞、句,能正確進行文字語言、圖形語言和符號語言的互譯,并能注意到聯系實際找出反例或實物;學生能弄清數學概念的內涵和外延,也就是既能區分相近的概念,又能知道其適用范圍。
(3)閱讀代數式
大多數學生在閱讀代數式時,只是按照代數式的順序去讀。教師應教會學生用多種方法讀同一個代數式,同時,在閱讀的過程中要注意式子本身的特點及其普遍性。
(4)閱讀例題
對于初中學生例題閱讀的指導,應按以下幾個步驟進行:首先,要讓學生認真審題;分析解題過程的關鍵所在,嘗試解題;其次,要讓學生比較例題和教材解法的.優劣,對一組相關聯的例題要相互比較,著力尋找,領悟解題規律,掌握規范書寫格式。并使解題過程的表達即簡潔又符合書寫格式;最后,還要引導學生總結解題規律,并努力探求新的解題途徑。
(5)閱讀公式
不要讓學生死記硬背公式,關鍵是要讓他們看清教材是怎樣把公式一步一步推導出來的,要提醒學生注意認真閱讀公式的推導過程。同時要讓學生明白公式的特征并能設法記住,另外還要讓他們注意公式的應用條件,弄明白有關公式的內在聯系,了解公式的運用、通用、合用、變用和巧用。
(6)閱讀數學定理。注意分清定理的條件和結論;探討定理的證明途徑和方法,通過與課本對照,分析證法的正誤、優劣;注意聯系類似定理,進行分析比較、掌握其應用;要思考定理可否逆用,推廣及引伸。
(7)閱讀提示與說明
教材中相關知識及許多習題的后面都附有說明或小括號式的提示語。例如,代數式概念中的“運算符號”,教材特指加、減、乘、除、乘方運算;要告訴學生對于這些說明或提示語,千萬不可忽視,往往解題的某一條件或關鍵正隱藏在這里,同時對選學內容,教師也應在自習課上給出相關的閱讀材料。
(8)閱讀章頭圖和小結
章頭圖讓學生對本章要學的知識有一個初步的認識和了解,明確要學的內容,做到心中有數、目的明確;而認真閱讀小結,則能教學生學會自我總結,這是一個歸納、總結、提升的過程。
3.加強課外閱讀,豐富學生知識
近年來應用題的考試情況告訴我們,數學閱讀不能僅僅局限于教材。教師應向學生推薦適宜的課外閱讀材料,給學生提供一些數學應用題讓學生閱讀,不一定要求他們全會做,但必須弄清題意,對于當今社會實踐中出現的新名詞有所了解,如“低炭”、“環保”、“利息稅”、“利潤”、“毛利潤”等。
四、數學閱讀教學的價值
重視數學閱讀,培養閱讀能力,有助于個別化學習,使每個學生都能夠通過自身的努力達到他所能達到的最高水平,實現素質教育的目標。要想使數學素質教育的目標得到落實,使學生不再感到數學難學,就必須重視數學閱讀教學。教師應加強指導學生認真閱讀課文,強調學生對數學課文的閱讀和理解,以促使學生養成良好的自學能力,即終身學習的能力。這將在整個中學數學教學中形成一種以培養自學能力為目的的教學風氣,同時有利于轉變數學教師的教學觀念,改變傳統的教學方式,優化過程,提高技巧,提高課堂教學的效率,拓展教師的視野及知識結構。
初中數學教學設計6
一、內容和內容解析
平行四邊形是“空間與圖形”領域中最基本的幾何圖形,它在生活中有著十分廣泛的應用,這不僅表現在日常生活中有許多平行四邊形的圖案,還包含其性質在生產、生活各領域的實際應用。
平行四邊形,是建立在前面學習了四邊形的概念和性質的基礎之上,將要學習的特殊的四邊形。本節課是平行四邊形的第一課時,主要研究平行四邊形的概念和邊、角的性質。
關于平行四邊形的概念,在小學,學生已經學過,并不會感到生疏,但對于這個概念的本質屬性,理解的并不是十分深刻,所以,本節課的學習,并不是簡單的重復。本節課,平行四邊形的定義采用的是內涵定義法,即“種概念+屬差=被定義的概念”。在平行四邊形的定義中,大前提是“四邊形(種概念)”,條件是“兩組對邊分別平行(屬差)”。“兩組對邊分別平行”是平行四邊形獨有的、用以區別于一般四邊形的本質屬性,這也是平行四邊形概念的核心之所在。平行四邊形的概念,揭示了平行四邊形與四邊形的隸屬關系、區別與聯系,反映了平行四邊形的本質屬性。同時,它既是平行四邊形的判定,又可以作為平行四邊形的一個性質。
關于平行四邊形邊、角的性質,“平行四邊形的對邊相等”相對于定義中的“兩組對邊分別平行”,是由位置關系向數量關系的一種延伸;“平行四邊形的對角相等”相對于“兩組對邊分別平行”,是由“相鄰的角互補”產生的思維的一種深化。同時,兩條性質的探究,經歷的是“感知、猜想、驗證、概括、證明”的認知過程;兩條性質的研究,先從邊分析,再從角分析,再到下一節課的從對角線分析,提供的是研究幾何圖形性質的一般思路;兩條性質的證明,滲透的是將四邊形問題轉化為三角形問題的一種轉化思想,而添加對角線,介紹的是將四邊形問題轉化為三角形問題的一種常用的轉化手段。
在本章的后續學習中,對于幾種特殊的四邊形,其定義均采用的是內涵定義法,并且矩形和菱形的定義,均以平行四邊形作為種概念,所以平行四邊形的`概念作為“核心概念”當之無愧。關于平行四邊形的性質,也是后續學習矩形、菱形、正方形等知識的基礎,這些特殊平行四邊形的性質,都是在平行四邊形性質基礎上擴充的,它們的探索方法,也都與平行四邊形性質的探索方法一脈相承,因此,平行四邊形的性質,在后續的學習中,也是處于核心地位。
教學重點:平行四邊形的概念和性質。
二、目標和目標解析
(1)教學目標:
①掌握平行四邊形的概念及性質。
②學會用分析法、綜合法解決問題。
③體會特殊與一般的辯證關系。
④逐步養成良好的個性思維品質。
(2)目標解析:
①使學生掌握平行四邊形的概念,掌握平行四邊形的對邊相等,對角相等的性質,會根據概念或性質進行有關的計算和證明。
②通過有關的證明及應用,教給學生一些基本的數學思想方法。使學生逐步學會分別從題設或結論出發,尋求論證思路,學會用綜合法證明問題,從而提高學生分析問題解決問題的能力。
③通過四邊形與平行四邊形的概念之間和性質之間的聯系與區別,使學生認識特殊與一般的辯證關系,個性與共性之間的關系等。使學生體會到事物之間總是互相聯系又相互區別的,進一步培養辯證唯物主義觀點。
④通過對平行四邊形性質的探究,使學生經歷觀察、分析、猜想、驗證、歸納、概括的認知過程,培養學生良好的個性思維品質。
初中數學教學設計7
一、學情分析
八年級學生具有強烈的好勝心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理
二、教材分析
這節課是人教版八年級第十八章第一節的內容,教學內容是勾股定理公式的推導、證明及其簡單的應用。本節課是在學生已經掌握了直角三角形有關性質的基礎上進行學習的,勾股定理是幾何中最重要的定理之一,它揭示的是直角三角形中三條邊之間的數量關系,將數與形密切聯系起來,為以后學習四邊形、圓、解直角三角形等數學知識奠定了基礎。它有著豐富的歷史背景,在數學的發展中起著重要的作用,在現實生活中也有著廣泛的應用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
三、教學目標設計
知識與技能
探索勾股定理的內容并證明,能夠運用勾股定理進行簡單計算和運用
過程與方法
(1)通過觀察分析,大膽猜想,探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。
(2)在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學過程,并體會數形結合和從特殊到一般的思想方法。
情感態度與價值
(1)在探索勾股定理的過程中,培養學生的合作交流意識和探索精神,增進數學學習的`信心,感受數學之美,探究之趣。
(2)利用遠程教育資源介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。
四、教學重點難點
教學重點
探索和證明勾股定理 ·教學難點
用拼圖的方法證明勾股定理
五、教學方法
(學法)“引導探索法”
(自主探究,合作學習,采用小組合作的方法。
六、教具準備
課件、三角板
七、教學過程設計
教學環節1
教學過程:創設情境探索新知 教師活動:出示第24屆國際數學家大會的會徽的圖案向學生提問
(1) 你見過這個圖案嗎?
(2) 你聽說過“勾股定理”嗎?
學生活動:學生思考回答
設計意圖:目的在于從現實生活中提出“趙爽弦圖”,進一步激發學生積極主動地投入到探索活動中,同時為探索勾股定理提供背景材料。
教學環節2 教學過程:實驗操作獲取新知歸納驗證完善新知
教師活動:出示課件,引導學生探索
學生活動:猜想實驗合作交流畫圖測量拼圖驗證
設計意圖:滲透從特殊到一般的數學思想。為學生提供參與數學活動的時間和空間,發揮學生的主體作用;讓學生自己動手拼出趙爽弦圖,培養他們學習數學的成就感。通過拼圖活動,使學生對定理的理解更加深刻,體會數學中的數形結合思想,調動學生思維的積極性,激發學生探求新知的欲望。給學生充分的時間與空間討論、交流,鼓勵學生敢于發表自己的見解,感受合作的重要性。
教學環節3 教學過程:解決問題應用新知
教師活動:出示例題和練習
學生活動:交流合作,解決問題
設計意圖:通過運用勾股定理對實際問題的解釋和應用,培養學生從身邊的事物中抽象出幾何模型的能力,使學生更加深刻地認識數學的本質:數學來源于生活,并能服務于生活,順利解決如何將實際問題轉化為求直角三角形邊長的問題,培養學生的數學應用意識。
教學環節4 教學內容:課堂小結鞏固新知布置作業
教師活動:引導學生小結
學生活動:討論交流、自由發言
設計意圖:既引導學生從面積的角度理解勾股定理,又從能力、情感、態度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
通過布置課外作業,給學生留有繼續學習的空間和興趣,及時獲知學生對本節課知識的掌握情況,適當的調整教學進度和教學方法,并對學習有困難的學生給與指導。
八、板書設計
勾股定理:如果直角三角形的兩直角邊分別為a和b,斜邊為c,那么 a2+b2=c2。
九、習題拓展
如圖,將長為10米的梯子AC斜靠在墻上,BC長為6米。
(1)求梯子上端A到墻的底端B的距離AB。
(2)若梯子下部C向后移動2米到C1點,那么梯子上部A向下移動了多少米?
十、作業設計
1。收集有關勾股定理的證明方法, 下節課展示、交流。
2。做一棵奇妙的勾股樹(選做)
初中數學教學設計8
關注課堂教學設計,注重課堂的開放性、生成性和創新性的教學設計是營造一個寬松和諧的學習環境必要手段。教師必須把課的主動權放給學生,自己和學生在課堂上都要“活”起來,讓學生敢想、敢問、敢做。教師要為學生提供充分發展個性的機會,充分尊重、理解、信任他們,這樣才能激發他們的上進心,主動參與數學學習活動。
教師要優化問題情境,讓學生親近數學,在數學教學中要不失時機地創造問題情境,誘發學生的學習積極性,促進學生思維的可持續發展,為學生學習數學做好充分的心理準備。
一、問題設計要有生活性
數學來源于生活,教師問題的設置要讓學生感覺到數學就在他們的周圍。如學習“菱形的性質”一節時,教師帶了一個可伸縮的衣帽架展現給同學們,將它伸縮成各種形狀的菱形,并說固定在墻上既美觀又實用,為學生提供了和諧的氣氛。這樣就強化了學生的`感性認識,從而達到了學生對數學的理解。
二、問題設計要有挑戰性
課堂提問是課堂教學中教師、學生、教材相互交流、相互撞擊的重要雙邊教學形式,是教師有較高智能和較高教學水平的具體體現。對課堂提問的原則、功能、技巧的認識程度決定于教師課堂教學能動性的差異,直接影響著課堂教學效果和學生思維的成敗。因此,教師在教學中要根據教學內容、學生的年齡特征,創設新奇的、具有神秘色彩的問題情境。
三、問題設計要有發現性
問題情境要不斷激發學生的學習動機,使學生處于“奮發”的狀態中,給學生提供思維的空間,讓他們學會自主學習,變“學會”為“會學”。如幾何題“三線合一定理”,它敘述了高線、中線、角平分線在等腰三角形內三者之間的關系規律,這一節課開始可在復習高線、中線、角平分線概念的基礎上提出一系列問題:
(1)三角形一邊上的高線(中線、角平分線)有什么性質?
(2)等腰三角形一邊上的高線(中線、角平分線)有什么性質?
(3)在同一個三角形中作一邊高線、中線、角平分線(這邊所對的頂角)是怎樣的?由此層層展開論證,開辟了知識的新領域,激發了學生求知的新興趣。
四、問題設計要有針對性
一個好的問題情境有助于問題的解決,有助于喚起學生對教學目標的情感,增強目標意識。無病呻吟的設計非但不能使學生領悟要領,相反更容易使他們誤入歧途。因此,問題情境的設置要觸及問題的本質,要針對教材、針對學生。
五、問題設計要有實效性
教師不管學生回答的問題質量如何,都應該給予肯定,使學生經歷一次獲得結論的過程,培養他們的邏輯思維能力。有些教師在講述專題內容時,基本直接告訴學生已有的結論或解決問題的程序,而不是啟發引導學生參與知識的發生、經歷探索活動的過程,因此在許多課堂教學中問題教學的偏差仍普遍存在,使得數學問題教學的誤區在不同程度上影響著學生的潛能的開發,缺乏問題情境的實效性。
復習提問中教師要善于設疑,問題的形式要新穎、富有情趣,為學生所喜聞樂“答”。
從提問的內容角度看,課堂教學提問要做到四忌:
(1)重點處發問點撥,切忌不痛不癢;
(2)要間接問有關知識,切忌離題太遠;
(3)鞏固性知識提問,要歸類記憶,切忌膚淺零雜;
(4)難點反復設疑,要深入淺出,切忌散亂無序。
總之,提問的技巧按課堂題材的不同應豐富多樣、精心設計,使學生在課堂提問中迸發出創造的火花。好的課堂教學應該有寬松和諧的學習氣氛,使學生在學習過程中產生豐富的情感體驗,對學習數學產生興趣,也會有積極主動的參與熱情。教師生動的語言、和藹的態度、富有啟發性和創造性的問題、有探索性的活動等都可以為學生創造和諧的環境。課堂提問不應是孤立地單項使用,而應有機結合地使用各種技巧提問,才能發揮課堂提問的作用。提問的過程不僅是誘導學生參與,它必須使學生給出其回答的理由,要對學生進行思維訓練,讓學生學會思考問題、解決問題,從而真正學會學習。
初中數學教學設計9
(一)創設情境導入新課
不利用工具,請你將一張用紙片做的角分成兩個相等的角。你有什么辦法?
如果前面活動中的紙片換成木板、鋼板等沒法折的角,又該怎么辦呢?
設計目的:能聚攏學生的思維為新課的開展創造了良好的教學氛圍。
(二)合作交流探究新知
(活動一)探究角平分儀的原理。具體過程如下:
播放美訪問我國的錄像資料------引出雨傘-----觀察它的截面圖,使學生認清其中的邊角關系-----引出角平分線;并且運用幾何畫板對傘的開合進行動態演示,讓學生直觀感受傘面形成的角與主桿的關系-----讓學生設計制作角平分儀;并利用以前所學的知識尋找理論上的依據,說明這個儀器的制作原理。
設計目的:用生活中的實例感知。以最近大事作引入點,以最常見的事物為載體,讓學生感受到生活中處處都有數學,認識到數學的價值。其中設計制作角平分儀,可培養學生的創造力和成就感以及學習數學的興趣。使學生很輕松的`完成活動二。
(活動二)通過上述探究,能否總結出尺規作已知角的平分線的一般方法.自己動手做做看.然后與同伴交流操作心得.
分小組完成這項活動,教師可參與到學生活動中,及時發現問題,給予啟發和指導,使講評更具有針對性。
討論結果展示:教師根據學生的敘述,利用多媒體課件演示作已知角的平分線的方法:
已知:∠AO B.
求作:∠AOB的平分線.
作法:
(1)以O為圓心,適當長為半徑作弧,分別交OA、OB于M、N.
(2)分別以M、N為圓心,大于1/2MN的長為半徑作弧.兩弧在∠AOB內部交于點C.
(3)作射線OC,射線OC即為所求.
設計目的:使學生能更直觀地理解畫法,提高學習數學的興趣。
議一議:
1.在上面作法的第二步中,去掉“大于MN的長”這個條件行嗎?
2.第二步中所作的兩弧交點一定在∠AOB的內部嗎?
設計這兩個問題的目的在于加深對角的平分線的作法的理解,培養數學嚴密性的良好學習習慣。
學生討論結果總結:
1.去掉“大于MN的長”這個條件,所作的兩弧可能沒有交點,所以就找不到角的平分線.
2.若分別以M、N為圓心,大于MN的長為半徑畫兩弧,兩弧的交點可能在∠AOB的內部,也可能在∠AOB的外部,而我們要找的是∠AOB內部的交點,否則兩弧交點與頂點連線得到的射線就不是∠AOB的平分線了.
3.角的平分線是一條射線.它不是線段,也不是直線,所以第二步中的兩個限制缺一不可.
4.這種作法的可行性可以通過全等三角形來證明.
(活動三)探究角平分線的性質
思考:已知一角及其角平分線添加輔助線構成全等三角形;構成全等的直角三角形。這樣的三角形有多少對?
這樣設計的目的是加深對全等的認識。
初中數學教學設計10
新學期已到來,我們又要投入到緊張、繁忙而有序地教育教學工作中,使自己今后的教學工作中能有效地、有序地貫徹新的教育精神,圍繞我校新學期的工作計劃要求制定初中一年級數學教學設計方案:
一、教材分析:
本學期是本年級學生初中學習階段的第二學期、新授課程主要有相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組、數據的收集、現行教材、教學大綱要求學生從身邊的實際問題出發,乘坐觀察、思考、探究、討論、歸納之舟,去探索、發現數學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教師在靈活選用現有教材的基礎上,應適度引用新例,把初中數學各單元的知識明晰化、條理化、規律化,激勵學生自主、合作、探究學習,培養學習興趣和習慣品質、
二、教學目標:
本學期的數學教學要從學生的實際問題出發,積極引導學生觀察、思考、探究、討論、歸納數學問題,要鼓勵學生去探索、發現數學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教學中既要注意知識的覆蓋面,關注中考的`重點、熱點和難點,又要突出數學知識在社會、科技中的運用,讓學生在學習、練習中熟記知識要點、考試內容,掌握應試技巧和數學思想方法,提高綜合素質,培養創新意識和探索能力、在期末考試中力爭生均分87分左右,及格率75%以上,并將低分率控制到10%以下,綜合成績縣前五、
三、教學措施:
1、認真鉆研教材,積極捕捉課改信息,盡力倡導自主、合作、探究學習,努力培養學生的學習興趣和個性品質、
2、把握學生思想動態,及時與學生溝通,搞好師生關系、
3、充分利用課堂教學時間,幫助學生理解教學重難點,訓練考點、熱點,強化記憶,形成能力,提高成績、
4、改進教學方法,用掛圖,實物創設情景進行教學,力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機會、
5、精講多練,在教學新知識的同時,注重舊知識的復習,使所學知識系統化,條理化,讓學生在練習、測試中鞏固提高,減少遺忘、
6、開辟第二課堂,在不加重學生負擔的前提下,積極引導學生閱讀課外書,促進學生自主、合作,探究學習,培養興趣,提高能力、
7、加強培優補中促差生的個別輔導,因材施教,培養學生的個性特長、特別要多鼓勵后進生,提高他們的學習興趣,培養他們良好的學習習慣:
(1)課前預習習慣;
(2)積極思考,主動發言習慣;
(3)自主作業習慣;
(4)課后復習習慣。
初中數學教學設計11
教材分析
1.這節的重點為:去括號。因此,本節所學的知識實際上就是對前面所學知識的一個鞏固和深化,要突破這個重點,只有在掌握方法的前提下,通過一定的練習來掌握。
2.去括號是整式加減的一個重要內容,也是下一章一元一次方程的直接基礎,也是今后繼續學習整式的乘除、因式分解、方程,以及分式、函數等的重要基礎。
學情分析
1.去括號法則是教材上的教學內容,學生學習時會經常出現錯用法則的現象。實驗表明:完全可以用乘法分配律取代去括號法則.這是由于:(1)“去括號法則”,增加了記憶負擔和出錯的機會,容易出錯;(2)去括號的法則增加了解題長度,降低了學習效率;(3)用乘法分配律去括號的學習是同化而非順應,易于理解與掌握;(4)用乘法分配律去括號是回歸本質,返璞歸真,且既可減少學習時間,又能提高運算的正確率。
教學目標
1.熟練掌握去括號時符號的變化規律;
2.能正確運用去括號進行合并同類項;
3.理解去括號的依據是乘法分配律。
教學重點和難點
重點
去括號時符號的變化規律。
難點
括號外的因數是負數時符號的變化規律。
教學過程
一、創設情景問題
青藏鐵路線上,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的形式速度可以達到120千米/時。
請問:(3)在格爾木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時,如果通過凍土地段需要t小時,則這段鐵路的全長可以怎么樣表示?凍土地段與非凍土地段相差多少千米?
解:這段鐵路的全長為100t+120(t-0.5)(千米)
凍土地段與非凍土地段相差100t-120(t-0.5)(千米)。
提出問題,如何化簡上面的兩個式子?引出本節課的學習內容。
二、探索新知
1.回顧:
1你記得乘法分配率嗎?怎么用字母來表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3
2.探究
計算(試著把括號去掉)
(1)13+(7-5)(2)13-(7-5)
類比數的運算,去掉下面式子的括號
(3)a+(b-c)(4)a-(b-c)
3.解決問題
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括號前,括號內有幾項、是什么符號?去括號后呢?
去括號的.依據是什么?
三、知識點歸納
去括號法則:
如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;
如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反.
注意事項
(1)去括號規律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;
(2)括號內原有幾項去掉括號后仍有幾項.
四、例題精講
例4化簡下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
五、鞏固練習
課本P68練習第一題.
六、課堂小結
1.今天你收獲了什么?
2.你覺得去括號時,應特別注意什么?
七、布置作業
課本P71習題2.2第2題
初中數學教學設計12
一、案例實施背景
本節課是20xx-20xx學年度第一學期筆者在一鄉鎮中學的多媒體教室里上的一節課,課堂中數學優秀生、中等生及后進生都有,所用教材為人教版義務教育課程九年級數學(上冊).
二、案例主題分析與設計
本節課是人教版義務教育教科書九年級上冊第24章第1節內容——圓,圓的概念是中心對稱的繼續,是后面研究扇形、弧長的基礎,是“空間與圖形”的重要組成部分。《數學課程標準》強調:數學教學是數學活動的教學,是師生之間、生生之間交往互動與共同發展的過程;動手實踐,自主探索,合作交流是孩子學習數學的重要方式;合作交流的學習形式是培養孩子積極參與、自主學習的有效途徑。本節課將以“生活·數學”、“活動·思考”、“表達·應用”為主線開展課堂教學,以學生看得到、感受得到的基本素材創設問題情境,引導學生活動,并在活動中激發學生認真思考、積極探索,主動獲取數學知識,從而促進學生研究性學習方式的形成,同時通過小組內學生相互協作研究,培養學生合作性學習精神。
三、案例教學目標
1、知識技能:探索圓的兩種定義,理解并掌握弧、弦、優弧、劣弧、半圓等基本概念,能夠從圖形中識別.
2、數學思考:體會圓的不同定義方法,感受圓和實際生活的聯系
3、解決問題:在解決問題過程中使學生體會數學知識在生活中的普遍性.
四、案例教學重、難點
1、重點:圓的兩種定義的探索,能夠解釋一些生活問題.
2、難點:圓的運動式定義方法.
五、案例教學用具
1、教具:多媒體課件、圓規、細線、鉛筆。
2、學具:圓規
六、案例教學過程
(一)創設問題情境,激發學生興趣,引出本節內容
1、如圖1,觀察下列圖形,從中找出共同特點.
圖1
2、學生活動:學生觀察圖形,發現圖中都有圓,然后回答問題,此時學生可以再舉出一些生活中類似的圖形.
3、教師活動:讓學生觀察圖形,感受圓和實際生活的密切聯系,同時激發學生的學習渴望以及探究熱情.
(二)問題引申,探究圓的定義,培養學生的探究精神
1、如圖2,觀察下列畫圓的過程,你能由此說出圓的形成過程嗎?(課件展示畫圖過程)
圖2
2、學生活動:學生小組合作、分組討論,通過動畫演示,發現在一個平面內一條線段OA繞它的一個端點O旋轉一周,另一個端點形成的圖形就是圓.
3、教師活動設計:在學生歸納的基礎上,引導學生對圓的一些基本概念作一界定:圓:在一個平面內,一條線段OA繞它的一個端點O旋轉一周,另一個端點A所形成的圖形叫作圓;圓心:固定的端點叫作圓心;半徑:線段OA的長度叫作這個圓的半徑;圓的表示方法:以點O為圓心的圓,記作“⊙O”,讀作“圓O”.
4、師生共同歸納:
(1)圓上各點到定點(圓心)的距離都等于定長(半徑);
(2)到定點的距離等于定長的點都在同一個圓上.
(3)圓的第二定義:所有到定點的距離等于定長的點組成的圖形叫作圓.
5、討論圓中相關元素的定義.
(1)如圖3,你能說出弦、直徑、弧、半圓的定義嗎?
圖3 (2)學生活動:學生小組討論,討論結束后派一名代表發言進行交流,在交流中逐步完善自己的結果.
(3)教師活動:在學生交流的基礎上得出上述概念的嚴格定義,對于學生的不準確的敘述,可以讓學生討論解決. 弦:連接圓上任意兩點的線段叫作弦; 直徑:經過圓心的弦叫作直徑;
弧:圓上任意兩點間的部分叫作圓弧,簡稱弧;
AB,讀作“圓弧AB”或“弧弧的表示方法:以A、B為端點的弧記作AB”;
半圓:圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫作半圓.
優弧:大于半圓的弧叫作優弧,用三個字母表示,如圖3中的 ABC;
. 劣弧:小于半圓的弧叫作劣弧,如圖3中的.BC
(三)討論,車輪為什么做成圓形?如果做成正方形會有什么結果?(課件:車輪;課件:方形車輪)
1、學生活動:學生首先根據對圓的概念的理解獨立思考,然后進行分組討論,最后進行交流.
2、教師活動設計:引導學生進行如下分析:如圖4,把車輪做成圓形,車輪上各點到車輪中心(圓心)的距離都等于車輪的半徑,當車輪在平面上滾動時,車輪中心與平面的距離保持不變,因此當車輛在平坦的路上行駛時,坐車的人會感覺到非常平穩;如果做成其他圖形,比如正方形,正方形的中心(對角線的交點)距離地面的距離隨著正方形的滾動而改變,因此中心到地面的距離就不是保持不變,因此不穩定.
圖4
(四)應用提高,培養學生的應用意識和創新能力m的圓?說出你的理由
2、師生活動設計:教師鼓勵學生獨立思考,讓學生表述自己的方法.根據圓的定義可以知道,圓是一條線段繞一個端點旋轉一周,另一個端點形成的圖形,所以可以用一條長5m的繩子,將繩子的一端A固定,然后拉緊繩子的另一端B,并繞A在地上轉一圈.B所經過的路徑就是所要的圓.cm,這棵紅杉樹平均每年半徑增加多少?
圖5
4、師生活動設計:首先求出半徑,然后除以20即可.
解答:樹干的半徑是23÷2=11.5(cm).
平均每年半徑增加11.5÷20=0.575(cm).
(五)歸納小結、布置作業
小結:圓的兩種定義以及相關概念.
作業:請做一個正方形的車輪,體會在車輪滾動的過程中車身的情況
七、教學反思
1、教師角色的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同探討者。在引導學生觀察、畫圖、發現結論后,利用多媒體課件直觀的、動態的展示圓的形成過程及車輪原理,激發了興趣。
2、學生角色的轉變:學生的角色從學會轉變為會學。本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變:整節課以 “流暢、開放、合作、“隱導”為基本特征。教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值。
初中數學教學設計13
1、該節課能以舊引新,尋找新舊知識的關聯和生長點,注重知識的發生發展過程,能找到教材特點及本課的疑點,并恰當處理,在課堂上設疑問難,引導點撥,是一節很有個性特點的課
2、本節課各種學習活動設計具體、充分注意學生學習習慣的培養,因材施教,調動學生自主學習的積極性,遵循常規但不拘泥,根據學生的差異和特點,從具體到抽象對教材進行處理,是一節很成功的`課
3、該節課教學過程設計完整有序,既體現知識結構,知識點,又注意突出學生活動設計,體現教學民主、培養學生良好的學習品質
4、課堂結構完整,密度恰當。
5、該節課很有藝術,教學安排清晰有序,科學規范。在教材處理上從具體到抽象,化難為易,以簡駕繁突破難點。各環節有詳細的練習,科學合理有效地培養學生自主,探究,創新能力的發展。
6、本節課非常成功,設計突出了以學生為本的理念、全面培養學生素養、自主合作探究學習的理念。教師配以親切活潑的教態,能較為恰當地運用豐富的表揚手段,讓學生在學習中感受到成功的快樂。
7、該節課教學重難點把握準確,教學內容主次分明,抓住關鍵;結構合理,銜接自然緊湊,組織嚴密,采用有效的教學手段,引導自主探究、合作交流,成功地教學生“會學”。
8、該節課堂結構層次清楚、運用恰當的教學方法和手段啟迪學生思維、解決重點、突出難點。精心設計練習,并在整個教學過程中注重學生能力的培養,是一節優秀的課。
9、該節課很有創意,對教材把握透徹、挖掘深入、處理新穎,針對學生基礎和學生發展性目標,設計各種教學活動,引導學生自主學習,有條理地將舊知識綜合進行運用。
10、本節課教學目標包括思想教育要求和知識要求兩部分,在課堂教學中注重后進生的補輔,尖子生的拔尖工作,做到對學生動之以情,愛之以誠,使網頁比賽取得完美的成果。
11、該節課教學設計非常巧妙,結合教材特點,學生、教師實際,一法為主,多法配合,優化組合。練習提供了學生喜聞樂見的資料,課堂練習緊扣重點,并注意在“趣”字上下功夫。
12、該節課教學環節清晰、完整具體,能活化教學內容,使之生活化,課堂教學的開放性、師生關系的民主性、教學模式的多樣性,培養學生良好的學習品質,體顯出該教師教學能力非常強。
13、該節課很有特色,創設情景,通過建站,讓學生親自體驗、實踐、感悟,收集、整理、篩選資料,突出體現了以人為本、以學生發展為本的教育理念。是一節很成功的課。
14、本節課很有藝術,在教材內容的基礎上作了適當的必要的擴展,精心安排學生自主學習、質疑、操作實踐等活動以啟發式、討論式為主。學生在完成任務的過和程中學會合作。
15、該節課重點突出,目標全面、準確、具體,整體現知識與能力、方法與過程、情感態度與價值觀三個維度,布局合理,設計各種教學活動,引導學生自主學習,有條理地將舊知識綜合進行運用。
16、該節課堂結構清晰、運用恰當的教學方法和手段啟迪學生思維、解決重點、突出難點。根據班級實際情況,精心設計練習,并在整個教學過程中注重因材施教,是一節優秀的課。
17、該節課十分有創意,教學目的明確,方法得當、語言清晰,具有感染力,習題典型,題量適當,激發學生興趣,引導自主探究、合作交流完成任務,整個課堂效率非常高。
18、本節課對教學內容把握透徹、挖掘深入、處理新穎,在課堂教學中,對重難點言簡意賅,分析透徹。對練習以思維訓練為核心,落實雙基,是一節非常成功的課
初中數學教學設計14
一、教學目標:
(1)學生在教師引導下,積極主動地經歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數學結論的過程。
(2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩定性,能用三角形的全等解決一些實際問題。
(3)培養學生的空間觀念,推理能力,發展有條理地表達能力,積累數學活動經驗。
二、教學的重點與難點:
重點:三角形全等條件的探索過程是本節課的重點。
從設置情景提出問題,到動手操作,交流,直至歸納得出結論,整個過程學生不僅得到了兩個三角形全等的條件,更重要得是經歷了知識的形成過程,體會了一種分析問題的方法,積累了數學活動經驗,這將有利于學生更好的理解數學,應用數學。
難點:三角形全等條件的探索過程,特別是創設出問題后,學生面對開放性問題,要做出全面、正確得分析,并對各種情況進行討論,對初一學生有一定的難度。
根據初一學生年齡、生理及心理特征,還不具備獨立系統地推理論證幾何問題的能力,思維受到一定的'局限,考慮問題不夠全面,因此要充分發揮教師的主導作用,適時
點撥、引導,盡可能調動所有學生的積極性、主動性參與到合作探討中來,使學生在與他人的合作交流中獲取新知,并使個性思維得以發展。
三、教學過程
電腦顯示,帶領學生復習全等三角定義及其性質。電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道全等三角形三條邊分別對應相等,三個角分別對應相等,那麼,反之這六個元素分別對應,這樣的兩個三角形一定全等。但是,是否一定需要六個條件呢?條件能否盡可能少嗎?對學生分類中出現的問題,予以糾正,對學生提出的解決問題的不同策略,要給予肯定和鼓勵,以滿足多樣化的學生需要,發展學生個性思維。
按照三角形“邊、角”元素進行分類,師生共同歸納得出:
1、一個條件:一角,一邊
2、兩個條件:兩角;兩邊;一角一邊
3、三個條件:三角;三邊;兩角一邊;兩邊一角
按以上分類順序動腦、動手操作,驗證。
教師收集學生的作品,加以比較,得出結論:
只給出一個或兩個條件時,都不能保證所畫出的三角形一定全等。
下面將研究三個條件下三角形全等的判定。
(1)已知三角形的三個角分別為40°、60°、80°,畫出這個三角形,并與同伴比較是否全等。
學生得出結論后,再舉例體會一下。舉例說明:
如老師上課用的三角尺與同學用的三角板三個角分別對應相等,但一個大一個小,很顯然不全等;
再如同是:等邊三角形,邊長不等,兩個三角形也不全等。等等。
(2)已知三角形三條邊分別是4cm,5cm,7cm,畫出這個三角形,并與同伴比較是否全等。
板演:三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。
由上面的結論可知:只要三角形三邊的長度確定了,這個三角形的形狀和大小就確定了。
實物演示:
由三根木條釘成的一個三角形框架,它的大小和形狀是固定不變的,三角形的這個性質叫三角形的穩定性。
舉例說明該性質在生活中的應用
類比著三角形,讓學生動手操作,研究四邊形、五邊性有無穩定性
圖形的穩定性與不穩定性在生活中都有其作用,讓學生舉例說明。
題組練習(略)
3、(對有能力的學生要求把實際問題抽象成數學問題,根據自己的理解寫出推理過程。對一般學生要求口頭表達理由,并能說明每一步的根據。)
教師帶領,回顧反思本節課對知識的研究探索過程,小結方法及結論,提煉數學思想,掌握數學規律。
在教師引導下回憶前面知識,為探究新知識作好準備。議一議:
學生分小組進行討論交流。受教師啟發,從最少條件開始考慮,一個條件;兩個條件;三個條件?經過學生逐步分析,各種情況漸漸明朗,進行交流予以匯總,歸納。
想一想:
對只給一個條件畫三角形,畫出的三角形一定全等嗎?
畫一畫:
按照下面給出的兩個條件做出三角形:(1)三角形的兩個角分別是:30°,50°(2)三角形的兩條邊分別是:4cm,6cm(3)三角形的一個角為
30,一條邊為3cm
剪一剪:
把所畫的三角形分別剪下來。
比一比:
同一條件下作出的三角形與其他同學作的比一比,是否全等。學生重復上面的操作過程,畫一畫,剪一剪,比一比。學生總結出:三個內角對應相等的兩個三角形不一定全等學生舉例說明
學生模仿上面的研究方法,獨立完成操作過程,通過交流,歸納得出結論。鼓勵學生自己舉出實例,體驗數學在生活中的應用。學生那出準備好的硬紙條,進行實驗,得出結論:四邊形、五邊形不具穩定性。
學生練習
學生在教師引導下回顧反思,歸納整理。
z+z平臺演示
z+z平臺演示,教師加以分析。學生分組討論,師生互動合作。
經過對各種情況得分析,歸納,總結,對學生滲透分類討論的數學思想。結論很顯然只需學生想像即可,z+z平臺輔助直觀演示。學生動手操作,通過實踐、自主探索、交流,獲得新知。
初中數學教學設計15
教學目標
1、知識與技能:
(1)理解一元一次不等式組及其解集的意義;
(2)掌握一元一次不等式組的解法。
2、過程與方法:
(1)經歷通過具體問題抽象出不等式組的過程,培養學生逐步形成分析問題和解決問題的能力。
(2)經歷一元一次不等式組解集的探究過程,培養學生的觀察能力和數形結合的思想方法,滲透類比和化歸思想。
3、情感、態度與價值觀:
(1)感受數形結合思想在數學學習中的作用,養成自主探究的良好學習習慣。
(2)學生在解不等式組的過程中體會用數學解決問題的直觀美和簡潔美。
2學情分析
本節討論的對象是一元一次不等式組。幾個一元一次不等式合在一起,就得到一元一次不等式組。從組成成員上看,一元一次不等式組是在一元一次不等式基礎上發展的新概念;從組成形式上看,一元一次不等式組與第八章學習的方程組有類似之處,都是同時滿足幾個數量關系,所求的都是集合不等式解集的公共部分或幾個方程的公共解。因此,在本節教學中應注意前面的基礎,讓學生借助對已學知識的認識學習新知識。
另外,本節課是在學生學習了一元一次方程、二元一次方程組和一元一次不等式之后的又一次數學建模思想學習,是今后利用一元一次不等式組解決實際問題的關鍵,是后續學習一元二次方程、函數的重要基礎,具有承前啟后的重要作用。另外,在整個學習過程中數軸起著不可替代的作用,處處滲透著數形結合的思想,這種數形結合的思想對學生今后學習數學有著重要的影響。
3重點難點
1、教學重點:對一元一次不等式組解集的認識及其解法。
2、教學難點:對一元一次不等式組解集的認識及確定。
3、教學關鍵:利用數軸確定不等式組中各個不等式解集的公共部分。
4教學過程4.1第一學時教學活動活動1【導入】溫故知新
教師提問:
1、什么是一元一次不等式?
2、什么是一元一次不等式的解集?
3、如何求一元一次不等式的解集?
針對性練習:
(設計意圖:檢驗學生是否理解和掌握一元一次不等式的相關概念,為本節新課內容的學習做好鋪墊。同時對解不等式中的相關要點加以強調:①解不等式中,系數化為1時不等號的方向是否要改變;②在數軸上表示解集時“實心圓點”和“空心圓圈”的選擇;③要正確理解利用數軸表示出來的不等式解集的幾何意義。)
活動2【講授】創設問題情景,探索新知
1、問題(課本第127頁):用每分鐘可抽30 t水的抽水機來抽污水管道里積存的污水,估計積存的污水
超過1 200 t而不足1 500 t,那么將污水抽完所用時間的范圍是什么?
(設計意圖:結合生活實例,讓學生經歷通過具體問題抽象出不等式組的.過程,即經歷知識的拓展過程,讓學生體會到數學學習的內容是現實的、有意義的、富有挑戰性的。)
2、引導學生找出問題中“積存的污水”需同時滿足的兩個不等關系:
超過1 200 t和不足1 500 t。
3、問題1:如何用數學式子表示這兩個不等關系?
1)引導學生一起把這個實際問題轉換為數學模型:
滿足一個不等關系我們可列一個不等式,滿足兩個不等關系可以列出兩個不等式。
設用x min將污水抽完,則x需同時滿足以下兩個不等式:
30x>1200, ①
30x<1500 ②
2)教師歸納一元一次不等式組的意義:
由于未知數x需同時滿足上述兩個不等式,那么類似于方程組,我們把這樣兩個不等式合起來,就組成一個一元一次不等式組。
(設計意圖:把實際問題轉換為數學模型,同時讓學生根據一元一次不等式和二元一次方程組的有關概念來類推一元一次不等式組的有關概念,滲透類比和化歸思想。)
4、問題2:怎樣確定不等式組中既滿足不等式①同時又滿足不等式②的x的可取值范圍?
1)教師分析:對于一元一次不等式組來說,組成不等式組的每一個不等式中都只含有一個未知數,
運用前面解一元一次不等式的知識,我們就能直接求出不等式組中的每一個一元一次不等式的解集。
2)得到解不等式組的第一個步驟:分別直接求出這兩個不等式的解集。學生自行求解:
由不等式①,解得x>40
由不等式②,解得x<50
3)教師引導學生根據題意,容易得到:在這兩個解集中,由于未知數x既要滿足x>40,也要同時滿足x<50,因此x>40和x<50這兩個解集的公共部分,就是不等式組中x可以取值的范圍。
(設計意圖:讓學生在教師的引導下探究不等式組的解集及其解法,養成自主探究的良好學習習慣。)
5、問題3:如何求得這兩個解集的公共部分?
學生活動:將不等式①和②的解集在同一條數軸上分別表示出來。
(設計意圖:啟發學生可利用數軸的直觀性幫助我們尋找這兩個不等式解集的公共部分。)
教師活動:利用多媒體課件,用三種不同形式表示這兩個解集,幫助學生求得這個公共部分。
(設計意圖:結合介紹利用數軸確定公共部分的三種不同形式,突破本節課的難點,培養學生的觀察能力和數形結合的思想方法。)
形式一:用兩種不同顏色表示這兩個解集
1)通過設置以下幾個問題,要求學生通過觀察、分組討論、取值驗證,自主得出結論。
(1)這兩種顏色把數軸分成幾個部分?
(2)每一個部分分別表示哪些數?
(3) 請每一小組的同學從這幾個部分中各取2~3個數,分別代入兩個不等式中,同時思考:哪部分的數既滿足不等式①同時又滿足不等式②?
2)學生通過自主探究、合作交流,得到這3個問題的正確答案。
3)得出結論:
只有紅色和藍色重疊的部分才既滿足不等式①又同時滿足不等式②。因此,紅色和藍色重疊的部分就是我們要找的x的可取值范圍。
4)教師提問:兩個不等式解集的界點:即實數40、50所在的點是否落在紅色和藍色重疊的部分?教師引導學生利用學過的驗證法進行驗證,并得出結論:兩個界點沒有落在紅色和藍色重疊的部分。
(設計意圖:讓學生對一系列的問題進行自主分析和解答,充分調動學生學習的主動性和積極性。同時在上述過程中,利用不同顏色的直觀性,目的在于能讓學生更清楚地找出不等式①和不等式②解集的公共部分。)
形式二:利用畫斜線的方式:用兩種不同方向的斜線分別畫出x>40和x<50這兩個部分的解集。
類似地,引導學生得出結論:兩個解集的公共部分,就是圖中兩種不同方向斜線重疊的部分,從而得出結論。
形式三:結合課本,利用兩條橫線都經過的部分來確定兩個解集的公共部分。
(設計意圖:介紹不同的形式,讓學生再一次鮮明、直觀地體會:x的可取值范圍是兩個不等式解集的公共部分;進一步培養學生的觀察能力和數形結合的思想方法。)
6、問題4:如何表示這個可取值范圍?
教師分析:在數軸上,未知數x落在實數40和50之間。而我們知道,數軸上的實數,它們從左到右的順序,就是從小到大的順序。因此,我們可將這三個數先按從小到大的順序書寫出來,再用小于號依次進行連接,記為40
7、小結并解決課本問題:原不等式組中x的取值范圍為40 (設計意圖:首尾呼應,完成了實際問題的研究,通過這個研究過程,讓學生進行感悟、歸納、領會知識的真諦。) 8、同時,類比一元一次不等式解集的幾何意義,教師再次進行歸納: 在數軸上,若在40 一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集。解不等式組就是求它的解集。 9、結合上述學習過程,讓學生和教師一起歸納解一元一次不等式組的步驟: (1)分別求出不等式組中各個不等式的解集; (2)把這些解集分別在同一條數軸上表示出來; (3)確定各個不等式解集的公共部分; (4)寫出不等式組的解集。 (設計意圖:及時進行小結,使學生對所學知識更加的系統化。) 【初中數學教學設計】相關文章: 初中數學教學設計07-09 數學初中教學設計02-21 數學初中教學設計02-21 初中數學教學設計03-24 【熱】初中數學教學設計05-13 【熱門】初中數學教學設計04-09 初中數學教學設計【熱】02-17 初中數學優秀教學設計07-11 人教版初中數學教學設計03-26