2017年高考數學課件
導語:今天小編給大家帶來的文章分享就是關于“2017年高考數學課件”希望內容對大家有用,歡迎欣賞。
1、遺忘空集致誤
由于空集是任何非空集合的真子集,因此B=?時也滿足B?A。解含有參數的集合問題時,要特別注意當參數在某個范圍內取值時所給的集合可能是空集這種情況。
2、忽視集合元素的三性致誤
集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求。
3、混淆命題的否定與否命題
命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。
4、充分條件、必要條件顛倒致誤
對于兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充分條件和必要條件的概念作出準確的判斷。
5、“或”“且”“非”理解不準致誤
命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應起來進行理解,通過集合的運算求解。
6、函數的單調區間理解不準致誤
在研究函數問題時要時時刻刻想到“函數的圖像”,學會從函數圖像上去分析問題、尋找解決問題的方法。對于函數的幾個不同的單調遞增(減)區間,切忌使用并集,只要指明這幾個區間是該函數的單調遞增(減)區間即可。
7、判斷函數奇偶性忽略定義域致誤
判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關于原點對稱,如果不具備這個條件,函數一定是非奇非偶函數。
8、函數零點定理使用不當致誤
如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,并且有f(a)f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點,但f(a)f(b)>0時,不能否定函數y=f(x)在(a,b)內有零點。函數的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數的零點定理是“無能為力”的,在解決函數的零點問題時要注意這個問題。
9、三角函數的單調性判斷致誤
對于函數y=Asin(ωx+φ)的單調性,當ω>0時,由于內層函數u=ωx+φ是單調遞增的,所以該函數的單調性和y=sin x的單調性相同,故可完全按照函數y=sin x的單調區間解決;但當ω<0時,內層函數u=ωx+φ是單調遞減的,此時該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性將內層函數的系數變為正數后再加以解決。對于帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷。
10、忽視零向量致誤
零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。
11、向量夾角范圍不清致誤
解題時要全面考慮問題。數學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。
12、an與Sn關系不清致誤
在數列問題中,數列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn-Sn-1,n≥2。這個關系對任意數列都是成立的.,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。
13、對數列的定義、性質理解錯誤
等差數列的前n項和在公差不為零時是關于n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數列。
14、數列中的最值錯誤
數列問題中其通項公式、前n項和公式都是關于正整數n的函數,要善于從函數的觀點認識和理解數列問題。數列的通項an與前n項和Sn的關系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統一。在關于正整數n的二次函數中其取最值的點要根據正整數距離二次函數的對稱軸的遠近而定。
15、錯位相減求和項處理不當致誤
錯位相減求和法的適用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和。基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n-1項和為主的求和問題.這里最容易出現問題的就是錯位相減后對剩余項的處理。
【2017年高考數學課件】相關文章:
數學教學課件模板04-02
小學趣味數學教學課件04-01
優秀數學教學課件分享04-01
跳繩小學數學課件05-07
數學計算方法課件08-06
學前班數學教學課件04-02
數學課件角的比較05-18
小學數學免費課件三篇05-11
趣味中學數學課件05-10
找規律數學課件設計05-08