抽屜原理說課稿
抽屜原理有時也被稱為鴿巢原理。它是組合數學中一個重要的原理。下面是小編為您整理的關于抽屜原理說課稿的相關資料,歡迎閱讀!
抽屜原理說課稿 范例1
一.說教學內容。
我說課的內容是人教版六年級數學下冊數學廣角《抽屜原理》第一課時,教材70-71頁的例1和例2.
二.說教學目標。
根據《數學課程標準》和教材內容,我確定本節課學習目標如下:
知識與技能:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數學活動,建立數學模型,發現規律。滲透“建模”思想。
過程與方法:經歷從具體到抽象的探究過程,提高學生有根據、有條理地進行思考和推理的能力。
情感與態度:通過“抽屜原理”的靈活應用,提高學生解決數學問題的能力和興趣,感受到數學文化及數學的魅力。
教學重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
三.說教學理念。
1、用具體的操作,將抽象變為直觀。
“總有一個文具盒中至少放進2支鉛筆”這句話對于學生而言,抽象難以理解。怎樣讓學生理解這句話呢?我覺得要讓學生充分的操作,一在具體操作中理解“總有”和“至少”,二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現“總有一個文具盒中至少放進2支鉛筆”這種現象,讓學生理解這句話。
2、充分發揮學生主動性,讓學生在證明結論的過程中探究方法,總結規律。
學生是學習的主動者,特別是這種原理的初步認識,不應該是教師牽著學生手去認識,而是創造條件,讓學生自己去探索,發現。所以我認為應該提出問題,讓學生在具體的操作中來證明他們的結論是否正確,讓學生初步經歷“數學證明”的過程,逐步提高學生的邏輯思維能力。
3、適當把握教學要求。
我們的教學不同于社會上的輔導培優機構,因此在教學中不需要求學生說理的嚴密性,也不需要學生確定過于抽象的“抽屜”和“物體”。
四.教法和學法:
以學生為課堂的主體,采用創設情境,提出問題,讓學生大膽猜測、動手操作、自主探究、合作交流。
五.說教學流程.
(一)、游戲激趣,初步體驗。
今天在學習新課之前,老師和大家玩一個“搶凳子”游戲。(下面有2把椅子。3個同學玩搶凳子的游戲,要求每個人都要坐到凳子上,結果會怎樣?)
【設計意圖:在課前進行的游戲激趣,一使教師和學生進行自然的溝通交流;二激發學生的興趣,引起探究的愿望;三為今天的探究埋下伏筆。】
(二)、操作探究,發現規律。
1、提出問題:把4支筆放進3個文具盒中,可以怎么放?
2、驗證結論:不管學生猜測的結論是什么,都要求學生借助實物進行操作,來驗證結論。學生以小組為單位進行操作和交流時,教師深入了解學生操作情況,找出列舉所有情況的學生。
(1)先請列舉所有情況的`學生進行匯報,一、說明列舉的不同情況,二、結合操作說明自己的結論。(教師根據學生的回答板書所有的情況)
學生匯報完后,教師再利用枚舉法的示意圖,指出每種情況中都有幾支筆被放進了同一個文具盒。
【設計意圖:抽屜原理對于學生來說,比較抽象,特別是“總有一個文具盒中至少放進2支鉛筆”這句話的理解。所以通過具體的操作,列舉所有的情況后,引導學生直接關注到每種分法中數量最多的文具盒,理解“總有一個文具盒”以及“至少2支”。讓學生初步經歷“數學證明”的過程,訓練學生的邏輯思維能力。】
(2)提出問題:不用一一列舉,想一想還有其它的方法來證明這個結論嗎?
學生匯報了自己的方法后,教師圍繞假設法,組織學生展開討論:為什么每個文具盒里都要放1支鉛筆呢?請相互之間討論一下。
在討論的基礎上,教師小結:假如每個文具盒放入一支鉛筆,剩下的一支還要放進一個文具盒,無論放在哪個文具盒里,一定能找到一個文具里至少有2支鉛筆。只有平均分才能將鉛筆盡可能的分散,保證“至少”的情況。
【設計意圖:鼓勵學生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎上,學生意識到了要考慮最少的情況,從而引出假設法滲透平均分的思想。】
(3)初步觀察規律。
教師繼續提問:6支鉛筆放進5個文具盒里呢?你還用一一列舉所有的擺法嗎?7支鉛筆放進6個文具盒里呢?100支鉛筆放進99個文具盒呢?你發現了什么?
【設計意圖:讓學生在這個連續的過程中初步感知方法的優劣,發展了學生的類推能力,形成比較抽象的數學思維。】
3、運用抽屜原理解決問題。
出示第70頁做一做,讓學生運用簡單的抽屜原理解決問題。在說理的過程中重點關注“余下的2只鴿子”如何分配?
【設計意圖:從余數1到余數2,讓學生再次體會要保證“至少”必須盡量平均分,余下的數也要進行二次平均分。】
4、發現規律,初步建模。
我們將鉛筆、鴿子看做物體,文具盒、鴿舍看做抽屜,觀察物體數和抽屜數,你發現了什么規律?(學生用自己的語言描述,只要大概意思正確即可)
小結:只要物體數量比抽屜的數量多,總有一個抽屜至少放進2個物體。這就叫做抽屜原理。
【設計意圖:通過對不同具體情況的判斷,初步建立“物體”“抽屜”的模型,發現簡單的抽屜原理。研究的問題于生活,還要還原到生活中去,所以請學生對課前的游戲的解釋,也是一個建模的過程,讓學生體會“抽屜”不一定是看得見,摸得著。】
5、用有余數的除法算式表示假設法的思維過程。
(1)教學例2,可以出示問題后,讓學生說理,然后問:這個思考過程可以用算式表示出來嗎?
(2)做一做:8只鴿子飛回3個鴿舍,至少有3支鴿子飛進同一個鴿舍。為什么?
【設計意圖:在例1和做一做的基礎上,相信學生會用平均分的方法解決“至少”的問題,將證明過程用有余數的除法算式表示,為下一步,學生發現結論與商和余數的關系做好鋪墊。】
6、再次發現規律。
觀察板書,你有什么發現嗎?讓學生通過對除法算式的觀察,得出“只要物體個數比抽屜個數幾倍還多,總有一個抽屜至少有商+1個這樣的物體。”的結論。
【設計意圖:對規律的認識是循序漸進的。在初次發現規律的基礎上,從“至少2個”德到“至少商+1個的結論。】
7、介紹課外知識。
介紹抽屜原理的發現者——數學家狄里克雷。
【設計意圖:讓學生體會平常事中也有數學原理,有探究的成就感,激發對數學的熱情。】
(三)、鞏固練習。
《導學練案》自我測評第一題
(四)、歸納小結,強化思想
對于本節課的學習,你的感受如何?
(五)板書設計
只要物體數量比抽屜的數量多,
總有一個抽屜至少放進2個物體。
這就叫做抽屜原理。
只要物體個數比抽屜個數幾倍還多,總 (至少數=商+1)
有一個抽屜至少有商+1個這樣的物體。
抽屜原理說課稿 范例2
今天我將要為大家講的課題是《抽屜原理》。
首先,我對本節教材進行一些分析:
一、教材結構與內容簡析
本節內容在全書及章節的地位:《抽屜原理》是義務教育課程標準實驗教科書第十二冊第五單元第一節。本節共三個例題,例1、例2的教材通過幾個直觀例子,借助實際操作向學生介紹抽屜原理,例3則是在學生理解抽屜原理這一數學方法的基礎上,用這一原理解決簡單的實際問題。
數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生的展示數學原理的靈活應用,讓學生感受數學的魅力,貫穿初步的數論及組合知識。
二、 教學目標
根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征 ,制定如下教學目標:
1 、基礎知識目標:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
2 、能力訓練目標:
1)、會用“抽屜原理”解決簡單的實際問題。
2)、通過操作發展學生有根據、有條理地進行思考和推理的能力,形成比較抽象的數學思維。
3 、個性品質目標:
通過“抽屜原理”的靈活應用感受數學的魅力,產生主動學數學的興趣。
三、 教學重點、難點、關鍵
本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點。
重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。 通過設計教學環節讓學生動手操作,自主探索,小組合作交流的方法找到解決問題的關鍵,總結出解決問題的辦法。
難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。 通過不同類型的練習,以及觀看鴿巢原理演示圖,建構知識,從本質上認識抽屜原理,將抽屜原理模型化,從而突破難點。
下面,為了講清重點、難點,使學生能達到本節設定的教學目標,我再從教法和學法上談談:
四、 教法
數學是一門培養人的思維,發展人的思維的重要學科,因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”,我們在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過程。由于本節課的教學內容較為抽象,著重采用情境教學法,直觀演示法與談話法相結合的方式進行教學。
五、 學法
教學最重要的就是讓學生學會學習的方法。授之以漁,而非授之以魚!因此在教學中要特別重視學法的指導。本節課學生主要采用了自主、合作、探究式的學習方式。
六、 教學程序及設想
1、由魯賓孫航海故事 引入:把三枚金幣放進兩個盒子里,至少有一個盒子會放幾枚金幣?把教學內容轉化為具有潛在意義的讓學生感興趣的問題,讓學生產生強烈的求知欲望,使學生的整個學習過程成為“探索”,繼而緊張地沉思,尋找理由,證明過程。
在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
本題從最簡單的數據開始擺放,有利于學生觀察、理解,有利于調動所有的學生積極參與進來。
【抽屜原理說課稿】相關文章:
抽屜原理說課稿07-05
《抽屜原理》說課稿06-11
抽屜原理說課稿07-05
抽屜原理說課稿01-31
關于《抽屜原理》說課稿06-11
《抽屜原理》說課稿范文02-10
《抽屜原理》數學說課稿08-14
抽屜原理簡要說課稿11-04
《抽屜原理》優秀語文說課稿06-11