數學平行教案
作為一位杰出的老師,常常需要準備教案,教案是實施教學的主要依據,有著至關重要的作用。那么優秀的教案是什么樣的呢?以下是小編為大家整理的數學平行教案,僅供參考,大家一起來看看吧。
數學平行教案1
教學目標:
(1)通過操作演示,使學生理解平行四邊形面積計算公式的推導過程,掌握平行四邊形面積計算公式,能正確計算平行四邊形的面積,培養學生初步的邏輯思維能力和空間觀念。
(2)能靈活運用平行四邊形的面積計算公式,根據面積計算平行四邊形的底和高,提高分析問題和解決問題的能力。
教學重點:通過操作演示,使學生理解平行四邊形面積計算公式的推導過程,掌握平行四邊形面積計算公式,能正確計算平行四邊形的面積。
教學難點:能靈活運用平行四邊形的`面積計算公式,根據面積計算平行四邊形的底和高,提高分析問題和解決問題的能力。
教學準備:教具、投影。
教學過程:
一、復習準備:
1.平行四邊形、三角形、梯形的概念。
2.平行四邊形、三角形的性質。
3.各圖形的對稱情況。
4.圖形的大小用面積來表示。 (引人新課)
二、新授
1.投影,并觀察,填書本P1的空格
2.操作:用割補法把平行四邊形拼成長方形。
3.量一量長方形的長和寬與平行四邊形的底和高有怎樣的關系?
4.得出:
長方形的面積= 長 × 寬
平行四邊形的面積=( )×( )
5.怎樣計算下面圖形的面積?
數學平行教案2
【教學內容】人教版四年級上冊第五單元56頁-57頁。
【教學目標】
1、認識垂線和平行線
2、使學生掌握“相互平行”與“相互垂直”的含義。
3、培養和發展學生的空間想象能力。
【教學重點】掌握垂直和平行的概念
【教學難點】理解平行線定義中“在同一個平面內的”的含義。
【教學過程】
一、情境導入,整理明標
1、復習導入:
師:我們在第三單元學習了線段、直線和射線,現在請你在你的本子上畫出一條直線,再回憶一下直線有哪些特征?
預設:(1)直的(2)向兩邊無線延伸(3)無法測量(2)沒有端點
師:在你剛才所畫的直線旁邊隨意再畫一條直線,會發生什么情況?
預設:
預設:通過回憶直線的`特征,構建兩條直線的位置關系,引入本節課的知識點——平行與垂直。
2、整理明標
(1)認識平行
(2)認識垂直
二、明確路徑,合作探究
問題一:采用小組合作探究兩條直線的位置關系,進而發現什么是平行。
問題二:通過學生觀察,教師講授,得出兩條直線相互垂直的概念。
三、展示反饋,對抗質疑
問題一:認識平行
(1)提出問題:觀察一下每組中的兩條直線,它們的位置有什么不同?你能按位置將他們分分類嗎?先獨立思考然后小組討論一下你是怎么分的?
(2)操作:按照相交和不相交的標準將它們分類。
(3)匯報:
(1) ①②,③④
(2)①,②③④
(4)出示定義:我們將同一個平面內不相交的兩條直線下了一個定義:在同一個平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。
(5)提出問題:你從剛才讀的這句話里找到那些重要的信息?
(6)匯報:①同一個平面內②不相交
(7)對抗:為什么要強調一定要在同意平面內?不在同一平面內行不行?
(8)演示:出示畫著兩條平行的直線的白紙,然后將紙沿著兩條直線中間剪開,成兩個平面展示。
(9)提出問題:如何表示兩條直線互相平行?(a∥b);生活中有平行線嗎?
(10)小結:很多地方都可以看到有平行線的存在,在同一個平面內不相交的兩條直線叫做平行線。
問題二:認識垂直
(1)操作:跟著老師一起來量一量兩條直線相交所成的角是多少度
(2)匯報:成90度和不成90度
(3)出示定義:我們將兩條直線相交成90度的情況下了一個定義:兩條直線相交成直角,就說這兩條直線相互垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(4)對抗:你從剛才所讀的這句話中得到哪些重要的信息?
(5)匯報:①相交②成直角
(6)提出問題:我們如何表示他們呢?(a⊥b);生活中有垂直的例子嗎?
(7)小結:生活中有很多垂直的例子,兩條直線相交成直角,就說這兩條直線相互垂直。
四、檢測總結,拓展延伸
1、練習
(1)教材第57頁做一做:獨立完成
2、全課總結:今天這節課你有什么收獲?
3、課后拓展:
(1)判斷
①、不相交的兩條直線叫做平行線。
②、在同一平面內,兩條直線不平行就一定垂直。?
③、過直線外一點能畫無數條直線的平行線.
(2)下面的圖形有平行和垂直的情況嗎?
出示“雙杠”圖讓學生找出平行與垂直。
數學平行教案3
教學目標:
(1)知識與技能:
探索平行線的性質定理,并掌握它們的圖形語言、文字語言、符號語言;會用平行線的性質定理進行簡單的計算、證明。
(2)過程與方法:
在定理的學習中,鍛煉觀察能力,嘗試與他人合作開展討論、研究,并表達自己的見解。
(3)情感態度、價值觀:
在課堂練習中,體驗幾何與實際生活的密切聯系。
教學重點:平行線的性質。
教學難點:平行線的性質定理與判定定理的區別。
教學模式:發現教學模式。
教學方法:直觀教學法、發現教學法、主體互動法。
教學手段:計算機輔助教學。
教學過程:
教學環節教師活動
學生活動教學意圖復習提問
復習提問:判定兩直線平行的方法有哪些?怎樣用符號語言表述?
思考、回答
了解學生的認知基礎,讓全體學生對前一節的內容進行回顧,并為新課的學習做準備。
進行新課
【大屏幕】請每位同學利用手中的條格紙,任意選取其中的兩條線作l1、l2,再隨意畫一條直線l3與l1、l2相交,用量角器量得圖中的八個角,并填表(見附錄1)
隨后同桌同學交換,再次測量、填表。
關注:對于沒有帶量角器的學生,鼓勵他們在無需測量的情況下,找出圖中各角的度量關系。
畫圖、測量、填表
思考、動手嘗試,方法可能多種多樣
激發學生探究數學問題的興趣,使學生獲得較強的感性認識,便于探索兩直線平行的性質定理。關注學生的實際操作,以及操作中的思考和學生學習數學的興趣。
給學生留有充分的探索和交流的空間,鼓勵學生利用多種方法探索,這對于發展學生的空間觀念,理解平行線的性質是十分重要的。
【提問】能否將我們發現的結論給予較為準確的文字表述?
總結、表述
鍛煉學生的歸納、表達能力,鼓勵學生敢于發表自己的觀點。
【大屏幕】平行線的性質:定理1.兩條平行線被第三條直線所截,同位角相等。簡言之:兩直線平行,同位角相等。
定理2.兩條平行線被第三條直線所截,內錯角相等。簡言之:兩直線平行,內錯角相等。
定理3.兩條平行線被第三條直線所截,同旁內角互補。簡言之:兩直線平行,同旁內角互補。
【提問】討論這些性質定理與前面所學的判定定理有什么不同?
理解、記憶
思考、討論、回答
進行文字語言的規范。
避免出現概念的混淆,滲透“命題”與“逆命題”的概念,突破本節課的難點避免出現概念的混淆,突破本節課的難點。
【提問】回憶平行線判定定理的符號語言的表述,參照附錄1的圖形,將上述性質定理怎樣用符號語言表達出呢?
【大屏幕】符號語言:(不唯一)
性質定理1.∵l1∥l2∴∠1=∠5(兩直線平行,同位角相等)
性質定理1.∵l1∥l2∴∠3=∠5(兩直線平行,內錯角相等)
性質定理1.∵l1∥l2
∴∠3+∠6=180o(兩直線平行,同旁內角互補)
思考、一位同學板書。
觀察、理解
為今后進一步學習推理打基礎,并進行符號語言的規范。
【提問】我們能否使用平行線的性質定理1說出性質定理2、3成立的道理呢?
鼓勵學生使用符號語言表述推導過程。
【大屏幕】規范定理的推導過程。
思考、嘗試回答
培養學生的邏輯思維能力以及嚴謹的治學態度。逐步鍛煉學生的推理能力,并進一步鞏固對定理的理解及語言的規范,感受成功的喜悅,樹立學習數學的信心。
例題示
范【大屏幕】例:如圖是一塊梯形鐵片的'殘余部分,量得∠A=100o,∠B=115o,梯形另外兩個角分別是多少度?
思考、嘗試運用符號語言進行推理。
要求學生會用平行線的性質進行計算,只需算出所求的度數即可。初次計算格式不一定很完整。
趣味練習【大屏幕】(見附錄2)
思考、討論、解釋結論,寓教于樂,進一步讓學生感受“認識來源于實踐”。
鞏固練習【大屏幕】鞏固練習(見附錄3)
積極思考、展開討論、踴躍回答,循序漸進提高難度、提高靈活運用定理的能力,感受解決有關平行問題的關鍵,突破難點,并進一步提高用符號語言進行推理的能力。
拓展思路【大屏幕】探究題(見附錄4)
【備注】如果時間不允許的話,該題可作為課后作業,并給予簡單的提示。
猜測、討論,尋找規律
使重點中學學生的思路進一步得以拓寬,初次接觸輔助線的添加,使學生能力得以提高。
課堂小結【提問】本節課我們學習了哪些定理?在表述這些定理時,應注意什么呢?
回顧、歸納將本節課知識進行回顧。
布置作業【大屏幕】布置作業:教材P67的4、5;P68的6、7;P69的11、12
課后完成
課后能進一步鞏固,鼓勵學生去發現身邊的數學問題。
附錄1:
如圖,請選取條格紙上的任意兩條直線l1、l2,
畫一條直線l3與這兩條平行線相交,標出這些角。度量這些角,把結果填入下表:
各對同位角、內錯角、同旁內角的度數之間有什么關系?大膽的去猜想,試著說一說!
附錄2:
趣味練習:一輛汽車在筆直的公路上行駛,在兩次轉彎后,仍在原來的方向上平行前進,那么這兩次轉彎的角度可以是()
A、先右轉80o,再左轉100o B、先左轉80o,再右轉80o
C、先左轉80o,再左轉100o D、先右轉80o,再右轉80o
附錄3:鞏固練習:
1、如圖,直線a∥b,∠1=54o,那么∠2、∠3、∠4各多少度?
2、請在括號中填寫理由:
①∵∠B=∠3∴AB∥CE()
②∵AB∥CE∴∠A=∠2()
③∵AB∥CE∴∠B+∠BCE=180o()
④∵∠A=∠2∴AB∥CE()
3、如圖,填空:
①∵ED∥AC(已知)
∴∠1=∠C()
②∵DF∥
(已知)
∴∠2=∠BED()
③∵AB∥DF(已知)
∴∠3=∠()
④∵AC∥ED(已知)
∴∠=∠
(兩直線平行,內錯角相等)
4、請結合圖形,根據所給定的平行線填入所需的角,并說明理由。(能否找出所有的情況)
①∵AB∥CD
∴∠____=∠_____()
②∵AD∥BC
∴∠____=∠_____()
③∵AE∥CF
∴∠____=∠_____()
附錄4:探究題:
如圖甲:已知AB∥DE,那么∠1+∠2+∠3等于多少度?試加以說明。
當已知條件不變,而圖形變為如圖乙時,結論改變了嗎?圖丙中的∠1+∠2+∠3+∠4是多少度呢?如果如丁圖所示,∠1+∠2+∠3+…+∠n的和又為多少度?你找到了什么規律嗎?
數學平行教案4
教學建議
一、知識結構
在平行線知識的基礎上,教科書以學生對長方體的直觀認識為基礎,通過觀察長方體的某些棱與面、面與面的不相交,進而把它們想象成空間里的直線與平面、平面與平面的不相交,來建立空間里平行的概念.培養學生的空間觀念.
二、重點、難點分析
能認識空間里直線與直線、直線與平面、平面與平面的平行關系既是本節教學重點也是難點.本節知識是線線平行的相關知識的延續,對培養學生的空間觀念,進一步研究空間中的點、線、面、體的關系具有重要的意義.
1.我們知道在同一平面內的兩條直線的位置關系有兩種:相交或平行,由于垂直和平行這兩種關系與人類的生產、生活密切相關,所以這兩種空間位置關系歷來受到人們的關注,前面我們學過在平面內直線與直線垂直的情況,以及在空間里直線與平面,平面與平面的垂直關系.
2.例如:在圖中長方體的'棱AA與面ABCD垂直,面AABB與面ABCD互相垂直并且當時我們還從觀察中得出下面兩個結論:
(1)一條棱垂直于一個面內兩條相交的棱,這條棱與這個面就互相垂直.
(2)一個面經過另一個面的一條垂直的棱,這兩個面就互相垂直.
正如上述,在空間里有垂直情況一樣,在空間里也有平行的情況,首先看棱AB與面ABCD的位置關系,把棱AB向兩方延長,面ABCD向各個方向延伸,它們總也不會相交,像這樣的棱和面就是互相平行的,同樣,棱AB與面DDCC是互相平行的,棱AA與面BBCC、與面DDCC也是互相平行的.
再看面ABCD與ABCD,這兩個面無論怎樣延展,它們總也不會相交,像這樣的兩個面是互相平行的,面AABB與DDCC也是互相平行的.
3.直線與平面、平面與平面平行的判定
(1)不在平面內的一條直線,只要與平面內的某一條直線平行,那么,這條直線與這個平面平行。(直線與平面平行的判定)
(2)如果一個平面內兩條直線都與另一個平面平行,那么這兩個平面互相平行。(空間里平面與平面平行的判定)
三、教法建議
1.空間里的平行關系,是高中學習《立體幾何》的重要部分,本節知識在初中階段讓學生積累一些感性的認識.學習這節內容要注意聯系實物(如火柴盒,教室)中的線與線、線與面、面與面的關系就容易得多了.
2.本節在已有的對長方體的直觀認識的基礎上,通過對長方體的棱與面、面與面的不相交的觀察,介紹了空間里的直線與平面、平面與平面平行的關系.目的主要是培養空間思維,但只是一個初步的感性認識,只需基本了解,不需要系統地學習.
3.教學時應該注意的是這里所說的平面一定是無限延伸的.兩面墻平行,是指兩面墻所在的平面平行,不是指墻這一小部分平行.
教學設計示例
一、教學目標
1.能借助長方體的棱與面、面與面的平行關系,說出空間里直線與平面、平面與平面的平行關系.
2.此外,在教學“空間里的平行關系”中,要培養學生的空間想象力.
3.通過平行關系在生活中的應用,培養學生的應用意識.
二、引導性材料
復習提問:
1.平面里,兩直線的位置關系有哪些?在空間里,兩直線的位置關系又有哪些?
2.試說出兩直線平行的意義.
前面,我們在學習“兩直線互相垂直”時,曾經學習過空間里的垂直關系.(可讓學生以教室為實例,說出一些線與面,面與面的垂直關系.)
前幾節課,又學習了“平行線”的有關知識,在實際生活中常常也說什么與什么“平行”.(教師演示:一根木條或鉛筆與桌面平行.)這種“平行”關系是什么樣的平行關系呢?你也能舉出一些這樣的實例嗎?這節課就研究這些問題.
三、知識產生和發展過程的教學設計
問題1—1:觀察下圖(也可要求學生攜帶一個長方體的包裝紙盒)中的長方體,棱AB與面ABCD的位置關系是什么?如果將棱AB向兩邊無限伸展,同時也將面ABCD向各個方向延展,它們之間有無可能相交?
問題1-2:圖中,你能以棱AB與面ABCD為一個具體例子,用類似于定義“平行線”的方法,給直線與平面平行下一個定義嗎?
(由學生口答,教師幫助完善,得出定義.)
問題1-3:圖中,除了棱AB外,還有與面ABCD平行的棱嗎?有哪幾條?
(由學生分別說出棱BC,CD,AD都與面ABCD平行.)
問題1-4:除了面ABCD外,棱AB還與哪個平面平行?
問題2—1:如下圖的長方體中,面ABCD與面ABCD能否相交?怎樣定義空間里的兩平面平行?
問題2-2:觀察你自己攜帶的長方體紙盒,能說出哪些平面平行嗎?
(可由學生討論后,請一位學生帶上紙盒,給學生邊演示,邊講解.)
四、例題解析
例題:如下圖,在長方體中,棱CD與哪些面平行?面ABCD與哪些棱平行?
答:棱CD與面ABBC、面ABCD平行;
面AADD棱BB、棱BC、棱CC、棱BC平行;
面ABBA與面DCCD平行.
(教師可根據教學的實際情況,對此例進行變式,如提出不同位置的線面.面面平行的問題.也可讓學生自己來提出問題.由學生自己借助長方體紙盒解答這些問題,以增強學生對空間平行關系的感知,發展想象能力.)
五、練習
課本第90頁練習第l、2題.
六、小結
本堂課以長方體(教室或紙盒)為實物模型,通過觀察長方體的棱與面、面與面的位置關系,并把它們想像成空間里的直線與平面、平面與平面,研究了空間里的線與面、面與面平行的關系.
我們生活在空間里,因而要養成用數學的眼光去觀察世界的習慣,并逐步地學會用數學知識去研究問題、解決問題.
數學平行教案5
教學內容:
義務教育六年制小學《數學》第九冊P64-P66
教學目的:
1、讓學生知道平行四邊形面積公式的推導過程,掌握平行四邊形面積的計算公式,并能應用公式正確地計算平行四邊形面積,數學教案-平行四邊形面積計算。
2、通過操作、觀察與比較,發展學生的空間觀念,培養學生運用轉化的思考方法解決問題的能力。
3、使學生初步感受到事物是相互聯系的,在一定條件下可以相互轉化。
4、培養學生自主學習的能力。
教學重點:
掌握平行四邊形面積公式。
教學難點:
平行四邊形面積公式的推導過程。
教具、學具準備:
1、多媒體計算機及課件;
2、投影儀;
3、硬紙板做成的可拉動的長方形框架;
4、每個學生5張平行四邊形硬紙片及剪刀一把。
教學過程:
一、復習導入:
1、我們認識的平面幾何圖形有哪些呢?(微機出示,圖形略)
2、在這幾個圖形中你們會求哪幾個的面積呢?(微機出示長方形和正方形的面積公式)
3、大家想不想知道其他幾個圖形的面積怎么求呢?我們這個單元就來學習“多邊形面積的計算”。
二、質疑引新:
1、老師知道同學們都很喜歡流氓兔,今天流氓兔遇到了一個難題,我們一起來幫它解決好不好?
2、微機顯示動畫故事:有一天,流氓兔在跑步的.時候,遇到了一個長方形框架,它不小心踹了一腳,把長方形變成了平行四邊形,流氓兔很奇怪:形狀改變了,面積改變了嗎?
3、演示教具:將硬紙板做成的長方形框架,拉動其一角,變為平行四邊形。
4、解決這個問題最好的辦法就是將兩個圖形的面積都求出來進行比較,長方形的面積我們會求了,平行四邊形的面積要怎么求呢?這節可我們就一起來學習平行四邊形面積的計算。(板書課題:平行四邊形面積的計算)
三、引導探求:
(一)、復習鋪墊:
1、什么圖形是平行四邊形呢?
2、拿出一個準備好的平行四邊形,找找它的底和高,并把高畫下來,比比看誰畫得多。
3、微機顯示并小結:平行四邊形可以作無數條高,以不同的邊為底對應的高是不同的。
(二)、推導公式:
1、小小魔術師:我們現在來做一個變一變的小游戲(微機顯示一個不規則圖形),我們可以直接用所學過的求面積公式來求它的面積嗎?
2、能不能把它轉化成我們學過的圖形呢?(用割補法轉化為長方形)
3、能不能用同樣的方法把一個平行四邊形轉化成長方形呢?請同學們拿出準備好的多個平行四邊形紙片及剪刀,自己動手,運用所學過的割補法將平行四邊形轉化為長方形。
4、學生實驗操作,教師巡視指導。
5、學生交流實驗情況:
⑴、誰愿意把你的轉化方法說給大家聽呢?請上臺來交流!(用投影儀演示剪拼過程)
⑵、有沒有不同的剪拼方法?(繼續請同學演示)。
⑶、微機演示各種轉化方法。
6、歸納總結規律:
沿著平行四邊形的任意一條高剪開,都可以通過平移把平行四邊形拼合成一個長方形。并引導學生形成以下概念:
⑴、平行四邊形剪拼成長方形后,什么變了?什么沒變?
⑵、剪拼成的長方形的長與寬分別與平行四邊形的底和高有什么關系?
⑶、剪樣成的圖形面積怎樣計算?得出:
因為:平行四邊形的面積=長方形的面積=長×寬=底×高
所以:平行四邊形的面積=底×高
(板書平行四邊形面積推導過程)
7、文字公式不方便,我們一起來學習用字母公式表示,如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么S=a×h(板書)。同時強調:在含有字母的式子中,字母和字母之間的乘號可以記作".",也可以省略不寫,所以平行四邊形的面積公式還可以記作S=a.h或S=ah(板書)。
8、讓學生閉上眼睛,在輕柔的音樂中回憶平行四邊形面積計算的推導過程。
四、鞏固練習:
1、剛才我們已經推導出了平行四邊形的面積公式,那么,要求平行四邊形的面積,必須要知道哪幾個條件?(底和高,強調高是底邊上的高)
2、練習:
⑴、(微機顯示例一)求平行四邊形的面積
⑵、判斷題(微機顯示,強調高是底邊上的高)
⑶、比較等底等高的平行四邊形面積的大小(用求面積的公式計算、比較,得出結論:等底等高的平行四邊形面積相等)
⑷、思考題:用求面積的公式解決流氓兔的難題(微機演示,得出結論:原長方形與改變后的平行四邊形比較,長方形的長等于平行四邊形的底,長方形的寬不等于平行四邊形的高,所以二者的面積不相等)。
五、問答總結:
1、通過這節課的學習,你學到了哪些知識?
2、平行四邊形面積的計算公式是什么?
3、平行四邊形面積公式是如何推導得出的?
六、課后作業:P67 1、2、3、5 《指導叢書》練習十六 1
數學平行教案6
教學設計思想:本節安排1課時講授;影子是生活中常見的現象,教學中引用太陽光照射下的影子種種生活中的實例,目的是讓學生體會影子在生活中的存在,激發學習的興趣。課前布置作業讓學生觀察不同時刻物體影子的變化,親自感受變化的情況,再通過教師講授逐步加深對投影相關概念的理解,并掌握其應用。
教學目標:
1.知識與技能
經歷實踐、探索的過程,知道平行投影、正投影的含義;
能夠確定物體在太陽光下的影子的特征;
知道在不同時刻物體在太陽光下形成的影子的大小和方向是不同的。
2.過程與方法
通過觀察、想象、實踐形成一定的空間想象能力,發展空間觀念;
探索不同時刻不同物體的影子的變化規律:影子長的比等于物體高度的比。
3.情感、態度與價值觀
通過理論研究自然現象,引發對大自然和社會生活探索的欲望,提高學習興趣,增進數學的應用意識。
教學重點:理解平行投影的含義。
教學難點:通過對平行投影的認識進行物體與投影之間的相互轉化。
教學方法:啟發式。
教學安排:1課時。
教學媒體:幻燈片。
教學過程:
課前準備:讓學生在課前觀察物體在陽光下的影子,自己總結出一些結論。
一、創設情景
問題1:
師:請看這幅圖片,哪位同學知道這是什么?(提出問題,激發學生的興趣)
教師陳述:日晷是我國古代利用日影測定時刻的儀器,它由“晷面”和“晷針”組成。
當太陽光照在日晷上時,晷針的影子就會投向晷面。隨著時間的推移,晷針的影子在晷面上慢慢地移動。以此來顯示時刻。(看下圖)
設疑激趣:利用古代顯示時刻的物體來引起學生的興趣。
二、引出課題
問題2:
師:太陽光可看成平行的直線,在陽光下,我們經常看見物體的影子,那同學們你們知道影子的長短和方向在一天中是怎樣變化的嗎?
下面我們來看幾副圖片:(幻燈顯示)
(1) (2) (3)
上面的三幅圖是在我國北方某地某天上午不同時刻的同一位置拍攝的,請根據樹的影子,判斷拍攝的先后順序,并說明理由。
生:通過這幾天觀察,如果上午觀察物體的影子,都是逐漸變短的一個過程,所以拍攝的先后順序是:(3)→(2)→(1)。
師:這位同學回答的很正確;但是哪位同學能解釋一下呢?
生:上午太陽從東方地平線上升起,逐漸升高,這里我們把太陽光線看成平行的直線,根據以前我們學過的幾何知識,通過畫圖,顯而易見影子隨著太陽的升高逐漸變短的。
師:回答的很好;根據上面的總結,我們觀看下面的圖片,觀察有什么變化?
在我國北方地區,人們居住的房屋窗戶大多是朝南的,中午某時刻室內的窗影在一年四季里會有什么變化呢?
學生相互討論,交流。
生:夏天的時候影子是最短的,冬天是最長的,春秋次之。
活動:學生有豐富的關于影子的生活經驗,讓他們結合經驗想象自己的影子從早到晚是如何變化的(包括大小和方向)?并叫三個學生代表太陽、物體、影子,模擬太陽東升西落。得出結論:大——小——大;西——北偏西——正北——北偏東——東。
教師總結:物體在光線的照射下,會在地面或墻面上留下它的影子,這種現象就是投影(projection)。
太陽的光線可看做平行線的,像這樣的.光線照射在物體上,所形成的投影叫做平行投影。光線是投影線,地面或墻面是投影面。
如上圖,用一束平行光線豎直照射水平放置的三角尺上,投影線、三角尺在水平面上的投影是平行投影。在這種平行投影中,光線是豎直照射在水平面上的。像這種平行投影又叫做正投影。
現在大家對投影有了一定的了解,再看下面這個圖形,思考問題:[
如圖,正方體正面(R面)在V面上的正投影 。
1.R面的正投影是什么圖形?與R面相對的面的在正投影是什么圖形?
2.Q面的正投影是什么圖形?與Q面相對的面的正投影是什么圖形?
3.P面及與它相對的面的正投影分別是什么圖形?
學生相應回答上面的問題。
師:我們學習了投影的相關概念,也觀看了許多投影的圖片,那同學們思考這樣的問題:
(1)一個物體的正投影是立體圖形還是平面圖形?
(2)點、線段和多邊形的正投影可能分別是什么圖形?
第一問顯而易見,教師可以找中下等學生回答。
第二問教師可以通過課件演示,學生觀看,回答問題。(參看課件:點、線、面的投影)
師生互動:
例:旗桿直立在A處,它的平行投影如圖所示。
(1)請畫出小明站在B處時的投影(用線段表示)。并說明你這樣畫的理由。
(2)如果小明站在C處,請畫出他的投影(用線段表示),并比較小明站在B、C兩處投影的長短。
(3)旗桿的高度與它投影長的比和小明的身高與他投影長的比有什么關系?為什么?
學生在教師的引導下,自主完成這道例題,教師再進行講解。
教師總結:一般地,兩個直立于地面的物體在陽光下的投影,或平行或在同一條直線上,兩個物體、他們的平行投影及過物體頂端的投影線,分別組成直角三角形,這兩個三角形相似。
三、練習
1.大致說出我國北方的確一天中(早晨、中午、傍晚),人在陽光下的投影的方向和長短。
2.下圖是一棵大樹在陽光下的投影,請畫出另一棵樹的投影(用線段表示)。
3.結合地理知識,談談在我國哪些地區會有太陽直射現象。這時人的投影是什么樣的?
四、課堂總結
板書設計:
平行投影
一、導入 平行投影
問題1: 正投影
二、新授 例:
問題2:
三、練習
投影:
四、總結
數學平行教案7
設計說明
1.創設情境,激發學生的好奇心,培養學生自主參與的意識。
數學活動是以學生的生活和現實問題為載體和背景的。從現實生活中抽象出數學問題,可以激發學生強烈的探究欲望,形成主動學習的動力。新課伊始,從常見的推拉窗和升國旗現象中引出以前學過的平移,進而引出平行的概念,并在教學活動中引導學生發現生活中處處都能找到平行線,從而激起學生對平行線的好奇心,進而使學生對平行線有強烈的探究欲望。這種探究欲望能促進學生自主參與意識的形成。
2.給學生創造動手實踐、自主探究、合作交流的機會,培養學生自主參與的能力。
教育觀念現代化的主要標志之一是強調給學生自主參與的機會,讓學生運用所學的知識進行實踐體驗。教學過程中通過擺鉛筆、平移鉛筆、折紙、畫平行線等活動,增加學生動手實踐的機會,放手讓學生動手操作、獨立探究,允許學生充分思考和想象。教師在操作探究中對各種不完善的地方進行指導,這樣學生才能有真切的體驗,并能在體驗中豐富經驗、獲得方法、形成態度、享受快樂、得到發展。
課前準備
教師準備 PPT課件
學生準備 直尺、三角尺、長方形紙、鉛筆、方格紙
教學過程
⊙觀察活動,感知平行線
1.動手操作,體會平移。
課件展示推拉窗和升國旗的`現象,引導學生進行觀察。
師:你知道這種運動叫什么嗎?你能用鉛筆將這種運動在方格紙上展示出來嗎?
(學生觀察,明確這是平移運動,動手在方格紙上平移鉛筆,感受平移過程。教師注意引導學生進行橫、豎、斜的平移操作)
師:生活中還有哪些是平移現象?
(乘電梯、汽車在筆直的公路上行駛、發動機的活塞運動、拉抽屜等)
師:你能用鉛筆在方格紙上展示升國旗的現象嗎?
(學生動手操作)
2.觀察位置關系,理解平行線。
(1)畫一畫。
師:你能將鉛筆平移前后的位置在方格紙上畫出來嗎?
(學生在方格紙上用直線表示出鉛筆平移前后的位置)
(2)看一看,想一想。
師:你在平移鉛筆的過程中發現了什么?
(學生小組內合作交流、討論)
預設
生1:發現平移前后兩條直線間的方格數總是一樣多。
生2:發現平移的直線有橫著的,也有豎著的。
生3:發現兩條直線無論怎樣延長永遠也不相交。
(3)明確平行的含義。
師:像這樣,在同一平面內,不相交的兩條直線叫作平行線。
設計意圖:通過生活實際情境的創設,讓學生感知平行產生的過程。動手用鉛筆在方格紙上移一移,畫一畫,其目的是讓學生體會平行線的特征
數學平行教案8
●教學目標
(一)教學知識點
1.平行線的判定公理.
2.平行線的判定定理.
(二)能力訓練要求
1.通過經歷探索平行線的判定方法的過程,發展學生的邏輯推理能力.
2.理解和掌握平行線的判定公理及兩個判定定理.
3.掌握應 用數學語言表示平行線的判定公理及定理,逐步掌握規范的推理論證格式.
( 三)情感與價值觀要求
通過學生畫圖、討論、 推理等活動,給學生滲透化歸思想和分類思想.
●教學重點
平行線的判定定理、公理.
●教學難點
推理過程的規范化表達.
●教學方法
嘗試指導、引導發現與討論相結合.
●教具準備
投影片五張
第一張:定理(記作投影片§6.3 A)
第二張:議一議( 記作投影片§6.3 B)
第三張:定理(記作投影片§6.3 C)
第四張:想一想(記作投影片§6. 3 D)
第五張:小結(記作 投影片§6.3 E)
●教學過程
Ⅰ. 巧設現實情境,引入新課
前面我們探索過直線平行的條件.大家來想一想:兩 條直線在什么情況下互相平 行呢?
上節 課我們談到了要證實一個命題是 真命題.除公理、定義外,其他真命題都需要通 過推理的方法證實.
我們知道:“在同一平面內,不相交的兩條直線叫做平行線”是定義.“兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行”是公理.那其他的三個真命題如何證實呢?這節課我們就來探討第三節:為什么它們平行.
Ⅱ.講授新課
看命題(出示投影片§6.3 A)
兩條直線被第三條直線所截 ,如果同旁內角互補,那么這兩條直線平行.
這是一個文字證明題,需要先把命題的文字語言轉化成幾何圖形和符號語言.所以根據題意,可以把這個文字證明題轉化為下列形式:
圖6 -12
如圖6-12,已知,∠1和∠2是直線a、b被直線c截出的同旁內角,且∠1與∠2互補 ,求證:a∥b.
那如何證明這個題呢?我們來分析分析.
[師生共析]要證明直線a與b平行,可以想到應用平行線的判定公理來證明.這時從圖中可以知道:∠1與∠3是同位角,所以只需證明∠1=∠3,則a與b即平行.
因為從圖中可知∠2與∠3組成一個平角,即∠2+∠3=180°,所以:∠3=180°-∠2 .又因為已知條件中有∠2與∠1互補,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代換可以知道:∠1=∠3.
好.下面我們來 書寫推理過程,大家口述,老師來書寫.(在 書寫的同時說明:符號“∵”讀作“因 為”,“∴”讀作“所以”)
證明:∵∠1與∠2互補(已知)
∴∠1+∠2=180°(互補的定義)
[∵∠1+∠2=180°]
∴∠1=180°-∠2(等式的性質 )
∵∠3+∠2=180°(1平角=180°)
∴∠3=180°-∠2(等式的性質)
[∵∠1 =180°-∠2,∠ 3=180°-∠2]
∴∠1=∠3(等量代換)
[∵∠1=∠3]
∴a∥b(同位角相等,兩直線平 行)
這樣我們經過推理的過程證明了一個命題是真命題,我們把這個真命題稱為 :直線平行的判定定理.
這一定理可簡單地寫成:
同旁內角互補,兩直線平行.
注意:(1)已給的公理,定義和已經證明的定理以后都可以作為依據.用來證明新定理.
(2)方括號內的“∵∠1+∠2=180°”等,就是上面 剛剛得到的“∴∠1+∠2=180°”,在這種情況下,方括號內的這一步可以省略.
(3)證明中的.每一步推理都要有根據,不能“想當然”.這些根據,可以是已知條件,也可以是定義、公理,已經學過的定理.在初學證明時,要求把根據寫在每一步推理后面的括號內.
好,下面大家來議一議(出示投影片§6.3 B)
小明用下面的方法作出了平行線,你認為他的作法對嗎?為什么?
圖6-13
這樣我們就又得到了直線平行的另一個判定定理:(出示投影片§6.3 C)
兩條直線被第三條 直線所截,如果內錯角相等,那么這兩條直線平行.
這一定理可以簡單說成:
內錯角相等,兩直線平 行.
剛才我們是應 用判定定理“同旁內角互補,兩直線平行”來證明這一定理的.下面大家來想一想(出示投影片§6.3 D)
借助“同位角相等,兩直線平行”這一公理,你還能證明哪些熟悉的結論呢?
同學們討論得真棒.下面我們通過練習來熟悉掌握直線平行的判定定理.
Ⅲ.課堂練習
(一)課本P190隨堂練習
(二)看課本P188~ 190,然后小結.
Ⅳ.課時小結
這節課我們主要探討了平行線的判定定理的證明.
由角的大小關系來證兩直線平行的方法,再一次體現了“數”與“形”的關系;而應用這些公理、 定理時,必須能在圖形中準確地識別出有 關的角.
注意:1.證明語言的規范化.
2.推理過程要有依據.
3.“兩條直線都和第三條直線平行,這兩 條直線互相平 行”這個真命題以后證.
Ⅴ.課后作業
(一)課本P191習題6.4 1、2
●板書設計
§6.3 為什么它們平行
一、平行線的判定方法
1.公理:同位角相等,兩直線平行.
2.定理:同旁內角互補,兩直線平行.
已知:如圖6-19,∠1和∠2是直線a、b被直線c截出的同旁內角,且∠1與∠2互補,求證:a∥b.
證明: 略
3.定理:內錯角相等,兩直線平行 .
已知,如圖6-20,∠1和∠2是直線a、b被直線c截出的內錯角 .且∠1 =∠2.
求證a∥b.
二、課堂練習
三、課時小結
四、課后作業
數學平行教案9
學習目標:
1、通過具體動手操作得出矩形的概念,知道矩形與平行四邊形的區別與聯系
2、通過類比平行四邊形的性質定理,推導并掌握矩形的性質定理,會用定理進行一些簡單的計算證明、
3、通過矩形的對角線相等這一性質能推導出直角三角形斜邊上的中線等于斜邊的一半,感受直角三角形與矩形之間的內在聯系,發展學生的合理推理的能力
學習重難點:
重點:矩形的性質定理
難點:靈活應用矩形的性質進行有關的計算與證明
課前準備
教具準備:活動平行四邊形框架、教師準備PPT課件
教學過程:
知識回顧
1、什么叫平行四邊形?
2、平行四邊形有哪些性質?
【設計意圖】:
通過對舊知的復習,一方面鞏固就知,另一方面為學習新知做好鋪墊
合作探究一:矩形的定義
閱讀課本第17-18頁,“實驗與探究”,思考:什么叫做矩形?
用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩定性,演示下圖,當平行四邊形的一個內角由銳角變為鈍角的過程中,會發生怎樣的特殊情況,這時的圖形是什么圖形、從上面的演示過程可以發現:平行四邊形具備什么條件時,就成了矩形?
【設計意圖】:
通過小組合作觀察,討論平行四邊形具備什么條件時,就成了矩形,自己歸納出矩形的定義、給學生更多的思考空間,促進學生積極思考,發展學生的思維
歸納:有一個角是直角的平行四邊形叫做矩形、
合作探究二:矩形的性質定理
1、自主完成18頁的觀察與思考,通過實際操作回答提出的問題
2、小組合作:完成對性質的證明過程
【設計意圖】:
通過利用手中的矩形紙片動手操作使學生對矩形的性質獲得豐富的直觀體驗,為總結矩形的性質定理打下堅實基礎
矩形的性質定理1:矩形的四個角都是直角
矩形的性質定理2:矩形的兩條對角線相等
合作探究三:直角三角形的性質定理3
設矩形的對角線AC與BD交于點O,那么,BE是Rt△AB中一條怎樣的特殊線段
(BO是Rt△ABC中斜邊AC上的中線)它與AC有什么大小關系,為什么?
【設計意圖】:
根據圖形學生很容易猜想結果,關鍵是從數學的角度證明留足充分的時間讓學生交流,教師適時引導,明確論證方法、學生獨立完成證明,以培養學生的推理能力、讓學生感受數學結論的確定性和證明的必要性
結論:直角三角形斜邊上的中線等于斜邊的一半
例題講解:
例1、如圖,矩形ABCD的`兩條對角線相交于點O,∠AOB=60°,AB=6㎝,求矩形對角線AC的長?
當堂檢測:
1、矩形具有而平行四邊形不具有的性質()
(A)對角相等(B)對邊相等(C)對角線相等(D)對角線互相平分
2、已知Rt△ ABC中,∠ABC=900,BD是斜邊AC上的中線
(1)若BD=3㎝,則AC=㎝
(2)若∠C=30°,AB=5㎝,則AC=㎝,BD=㎝
3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的長
4、工人師傅做鋁合金窗框分下面三個步驟進行:
(1)先截出兩對符合規格的鋁合金窗料(如圖1),使AB=CD,EF=GH;
(2)擺放成如圖(2)的四邊形,則這時窗框的形狀是_____,根據的數學道理是__________;
(3)將直角尺靠緊窗框的一個角(如圖3)調整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖4),說明窗框合格,這時窗框是____,根據的數學道理是________________。
課堂小結:
請說出你本節課的收獲,與大家一塊分享!!
作業:
課本P、20第2題
板書設計:
xxx
數學平行教案10
教學目標:
知識技能:認識平行四邊形,能在方格紙上畫平行四邊形。
過程方法:在對簡單圖形分類的過程中,經歷認識平行四邊形的過程。
情感態度:鼓勵學生發現日常生活中形狀是平行四邊形的物體,初步體會平行四邊形的.作用。
教學過程:
一、 創設情境
1、認識平行四邊形
(1)出示下圖,認真觀察。94頁的一組圖形,讓學生仔細觀察,然后提出分類的要求。
(2)在交流的基礎上,讓學生了解什么樣的圖形叫做平行四邊形。
(3)引導學生從自動拉門、籬笆中找出平行四邊形。
2、感悟平行四邊形的特征
⑴學會畫平行四邊形。
教師掩飾在方格紙上畫一個平行四邊形。
⑵引導學生找到平行四邊形的不穩定性。
二、實踐與應用
1.下面哪些圖形是平行四邊形?把它涂上色。
2.在方格紙上畫一個大一點的平行四邊形。
三、全課小結
學生匯報本節課的收獲。
數學平行教案11
教學目標:
1、學生能夠通過觀察、操作和討論,初步理解垂直與平行是同一平面內兩條直線這兩種特殊的位置關系。,初步認識垂線和平行線,正確理解“垂直”、“平行”的概念。
2、引導學生通過觀察、討論感知生活中的垂直與平行的現象,體會數學與生活的聯系。能對生活中垂直與平行的現象做出正確的判斷。
3、在“想象—操作—交流—歸納—質疑—總結—應用”探究過程中,引導學生樹立合作探究的學習意識,發展學生的空間觀念及空間想象能力。教學重點:準確理解“相交”、“互相平行”、“互相垂直”等概念,發展學生的空間思維想象能力。
教學難點:對相交現象的正確理解(尤其是對看似不相交而實際上是相交現象的.理解)和對同一平面的理解。
學法引導:引導學生通過“想象畫線”、“感知特征”、“自主探究”、“拓展延伸”等活動,運用想象、觀察、討論、驗證等方法,合作交流、自主探究新知,形成運用已有的知識解決新問題的能力。
學具準備:小棒3根/人,白紙2張/人,記號筆1只/人。教具準備:三角尺一把,直尺兩把,立方體一個。
教學過程:
一、復習導入,大膽想象
1、復習直線及其特點。
(1)直線有什么特點?
(2)想象直線的延伸。
(3)初步明確學習任務。如果大屏幕上又出現一條直線,這兩條直線可能會形成什么樣的關系?今天這節課,我們就要來研究兩條直線的關系。
2、大膽想象:請同學們在白紙上把你想到的兩條直線之間可能形成的關系畫下來,看看你能畫幾種不同的情況。注意:一張紙上畫兩條線,畫完后同桌互相交流、欣賞。
3、選擇部分學生把作品貼到黑板上,并進行編號。
二、觀察分類,感知特征
1、出示有代表性的幾組的直線
2、分類
(1)小組內部分類交流確定一下你認為最合理的分類方案:觀察這些圖形,根據兩條線之間的關系將他們進行分類,可以分幾類?為什么這樣分?
(2)交流分類方法,揭示“不相交”“相交”概念師:同學們都有自己的道理,很好,學數學就是要有自己的想法!老師發現剛才同學們在介紹分類的時候圍繞一個詞語——交叉。也就是說兩條線碰一塊兒了。在數學上我們把交叉稱為相交,相交就是相互交叉。
(并在適當時機板書:相交)如果按照“不相交”和“相交”兩種情況來分類,應該怎么分?(板書:不相交)
(3)你覺得相交的有哪些?說出你的理由。質疑:同學們的主要分歧在哪里?2號、3號的兩條直線,相交不相交?(用自己的方法驗證a、觀察想象b、延長驗證c、測量判斷)對于延長后可以相交的給予課件演示突破難點。這種看起來快要相交的一類也屬于相交,只是我們在畫直線直線時,沒有吧直線全部畫出來。
(4)再次分類
(5)小結:通過剛才的討論,我們知道了兩條直線的位置關系,一類是“相交”,另一類是“不相交”。
三、自主學習,探究新知
(一)認識平行線師:這幾組直線就真的不相交了嗎?怎樣驗證?(邊提問邊用課件演示)
師:在數學上,像這樣的兩條直線就叫做平行線。(板書:平行線)
1、學生自學課本65頁中間第1行第2行完成學案
2、小組代表匯報交流學習成果。
(1)理解平行線的概念,找出概念中的關鍵詞。
(2)通過圖形對比加深理解概念本質屬性。
(3)通過判斷深化理解概念。
3、師生共同小結。
師:要判斷一組直線是不是平行線,要具備什么條件?我們還可以說,這兩條直線互相平行。(板書:互相平行)
師:例如:這是直線a,這是直線b,我們可以說……強調調要說誰和誰互相平行?
(二)認識垂線
師:咱們再來看看兩條直線相交的情況。你發現了什么?
師:你認為在這幾組相交的直線中哪種最特殊?(相交形成了四個直角)
師:這幾組兩條直線相交成直角,而其他情況相交形成的都不是直角,有的是銳角有的是鈍角。(板書:成直角、不成直角)
師:怎么證明這幾個是直角呢?(學生驗證:三角板、量角器)
師:像這樣的兩條直線,我們就說這兩條直線互相垂直。
1、學生們自學65頁中間的部分完成學案(二)。
2、小組代表匯報交流學習成果。
3、師生共同小結。
(三)小結:剛才,我們通過分類活動,認識了在同一個平面內,兩條直線不同的位置關系,其中兩種比較特殊的是垂直與平行(板書課題)
四、鞏固練習,聯系生活
1、想一想生活中,哪組直線互相平行,哪組直線互相垂直?
數學平行教案12
[教學目標]
1、認識平行,感知平行線的特征,初步學會畫平行線,了解平行線在生活中的應用。
2、培養空間想象能力與聯系實際的意識和能力。
3、感受數學的價值,培養學習數學的興趣。
[教學過程]
一、認識平行
1、初步感知,嘗試判斷
師;上課一開始,讓我們先來看一小段錄像(播放錄像)
師:錄像里的小朋友在干什么啊? 生:開窗戶。
師:開窗戶過程中,這扇窗戶在做什么運動呢?
生:平移
師:是的,平移是我們上個學期學過的知識,你們學得很好。我們看,窗戶的一條邊一開始在這個位置;平移之后,到了這個位置。你知道這條邊與這條邊的位置之間有什么關系嗎?
生:平行
師:你的知識面真廣,這節課就讓我們一起來學習平行線。
師:你知道平行線嗎?
高老師這里有幾幅圖,請同學們找一找,哪些圖畫出了你心目中的平行線?
生1:第1幅、第5幅、第7幅。
生2:就第1幅
生3:1 和5
師:看來,同學們對平行線都有自己的認識。到底你的想法對不對呢?,學完這節課后,相信你一定能得到一個肯定的答案。
2、充分體驗,探討本質
師:那么數學上,究竟什么是平行線呢?
我們來看:
窗戶這兩條直直的邊我們可以看成是兩條線段,這條線段如果向兩端無限延伸、延伸。閉上眼睛想象一下,你看到的兩條直線會怎樣?會相交嗎?
生:不會
師:都說眼見為實,這兩條直線我看到的部分的確是不相交的,可是無限延伸之后我看不到,你憑什么說他們永遠不會相交呢?
生1:因為延長是不會彎過來的。
生2:他們不會越來越近,最后靠在一起。
生3:它們之間的寬度始終不會變的。
師:寬度一樣,其實就是說他們的距離處處相等。(課件驗證)
因為他們的距離處處相等,無限延伸之后始終保持著這樣的距離,所以,他們永遠不會相交。
3、提升概念,再次判斷
(板書并口述:永不相交的兩條直線相互平行)
師:兩條直線相互平行,我們也可以說其中一條就是另一條的`平行線。
如果我們把兩條直線分別標上名字,AB和CD,我們就說直線AB平行于直線CD,記作AB∥CD
師:我現在如果把這兩條直線都斜過來,現在他們相互平行嗎?
生:平行的。
師:為什么?
生:因為他們永不相交。
師:我們回頭再來看剛才的8幅圖。
⑴你能利用剛才學習的概念,找出這里的平行線嗎?要說出充分的理由。
(重點討論學生初次判斷錯誤的、有爭議的或不敢肯定的。是平行線,為什么是;不是,又為什么。使學生對平行的認識更加深刻)
⑵指圖⑦只有一條直線,你能幫他找一天和他平行的直線嗎?
生:圖1
師:上面一條還是下面一條
生:兩條都和圖7的直線平行
4、生活中的平行線
師:這些直線是相互平行的,生活中你還能找到這樣的平行線嗎?
生1:黑板的上面和下面
師:是的,黑板的對邊是相互平行的
生2:桌子的這兩條邊是相互平行的
師:你指桌子的對邊是相互平行的吧,我希望同學們能表達得清楚些。
師:高老師這里還有一些圖片,你能從中找到平行線嗎?
生1:那幅畫的對邊是相互平行的
生2:樓梯扶手的兩條邊是相互平行的
生3:護欄豎的和豎的是相互平行的
師:是的,現在再來看看這里
生1:爬干都是平行的
生2:瓷磚的對邊是平行的
生3:花壇的對邊是平行的
師:看來生活中的平行線還真不少。有個小朋友叫淘氣,他發現所有的窗戶都太像了,沒有一點兒創意。于是,他設計了這樣的新型窗戶。
師:你能接受淘氣的設計嗎?為什么?
生1:不同意,因為這樣的話,窗戶就無法移動了。
生2:如果窗戶往右移就會掉下來。
師:看來,平行不僅美觀,還很有用。
剛才同學們找到的都是靜止的,現在讓我們看看運動中的平行線。
每周一我們都要舉行升國旗儀式。國旗的上邊從這里平移到了這里,他們是相互平行的。
師:再看看這副圖。箭頭從這里平移到這里。同學們,線段 HG一開始在這里,平移后到了H1G1,線段HG和線段H1G1平行嗎?那你能從平移前后的箭頭中,找出類似的相互平行的線段嗎?
生:線段AD平行于線段A1D1
二、動手畫平行線
1、師:現在同學們都認識了平行線,你能在白紙上畫平行線嗎?
請同學們拿出白紙,看第一題,高老師已經給你們畫好了一條直線,現在你能畫出它的平行線嗎?
注意:你在畫的時候想一想,按照你的畫法能保證一定平行嗎?
生:動手操作
展示:1、量距離。2、沿著一把尺的兩邊畫。3、直尺平移
師:畫這條線的平行線,可以畫幾條啊?
生:無數條
師:現在,你對這三種方法有什么想說的嗎?
生:(說說各種方法的局限性)
師:看來每種方法各有各的有點和缺點,因此我們在畫平行線的時候,要選擇最合適的方法。
2、師:現在請同學們選擇合適的方法完成第二題。
教師掩飾直尺平移法,
注意點:1、對 2、靠 3、移 4、畫
2、師:現在先請同學們在紙上畫任意一條直線。
生:……
師:現在請同桌交換白紙,給同桌畫的直線畫一條平行線。要求先一個人畫另一個看,看同桌畫得對不對,然后再交換,聽明白我的意思了嗎?好,開始。
三、總結,交流
學了這節課后,你對平行線有什么新的認識嗎?
隨著學習的不斷深入,我們對平行的認識也會越來越深刻。
四、拓展
師:請同學們看這兩條線,它們相互平行嗎?
師:它們都在長方體的哪一個面上?
師:請同學們注意(轉動盒子,使兩直線異面)
師:這兩條直線會相交嗎?那它們平行嗎?
那你覺得我們在說兩直線平行時,是不是還應該加一個前提條件啊?
概括:在同一平面內,永不相交的兩條直線相互平行。
[板書設計]
平移與平行
平移 平行
數學平行教案13
一、教學目標:
1.運用生活實例和實踐操作認識平行四邊形,發現平行四邊形的基本特征。
2.學會用不同方法制作一個平行四邊形,通過猜想驗證發現平行四邊形的特征。
3.在解決實際問題中感受圖形與生活的聯系,培養學生空間觀念和動手實踐能力。
教學重點:在制作中發現平行四邊形的基本特征。
教學難點:引導學生發現平行四邊形的特征。
二、教學過程:
(一)創設情境,設疑激趣
1.師:同學們每天都要經過校門進入校園,但是你們注意觀察我們的校門了嗎?從圖片中你們能找到一些平面圖形嗎?
生:能
師:是什么平面圖形,誰能上來指一指。
生:平行四邊形
根據回答:教師板書:平行四邊形
(二)引導探究,自主建構
師:同學們再看,這里面有沒有平行四邊形?(出示擴縮尺、升降機圖片)
生:誰能上來指一指?
師:那同學們想一下什么樣的圖形是平行四邊形呢?請看大屏幕
(大屏幕出示平行四邊形定義:兩組對邊分別平行的四邊形叫做平行四邊形)
師:誰能找一下這句話里最重要的幾個詞,并解釋一下?
生:四邊形
師:什么樣的圖形是四邊形?
生:由四條邊圍成的圖形
師:還有哪幾個詞?
生:兩組對邊分別平行
師:你能上來一邊用手指著一邊給大家解釋一下這句話嗎?
生:能
師:除了兩組對邊分別平行,兩組對邊的長度有什么關系呢?拿出剛剛發給你的平行四邊形,量一量四條邊的長度,你發現了什么?
生:兩組對邊相等
師:平行四邊形的兩組對邊平行且相等,那么平行四邊形的對角有什么特點呢?繼續拿出發給你的平行四邊形,把兩組對角像老師這樣折一折,你發現了什么?
生:兩組對角相等
師:剛才同學們說的都非常好,現在帶著你的`理解在研究單的方格紙上畫一個平行四邊形
生畫圖,師巡視指導。
研究單
在下面的方格紙上畫一個平行四邊形
師:(選幾個學生畫的平行四邊形粘到黑板上)孩子們,畫好了嗎?
生:畫好了
師:畫好了,請看黑板,思考老師這樣一個問題:為什么同學們畫的平行四邊形都不一樣大呢?
隨意生怎么說,只要表達出底和高的意思就行
師:介紹平行四邊形的底和高
注:這個平行四邊形的高學生畫
注:老師畫第二種情況
師:請同學們繼續拿出研究單,完成研究二。不用寫,能思考出答案就行
研究二:總結正方形、長方形和平行四邊形的特征。
正方形
長方形
平行四邊形
邊
角
師:孩子們,現在小組交流一下你的想法
生生交流,師巡視指導
師:好了,小組交流到此結束,哪個小組愿意全班交流一下你們的想法。
生:......
師:同學們請繼續看,老師這里有一個平行四邊形框架,(來回拉動平行四邊形),你發現平行四邊形有什么性質?
生:具有不穩定性
師:(繼續拉動平行四邊形,拉成長方形),說明長方形和平行四邊形是什么關系?
生:長方形是特殊的平行四邊形。
師:同學們,我們已經學過正方形、長方形的關系,誰來說一說?
生:正方形是特殊的長方形(師出示長方形圈正方形的圈)
師:利用平行四邊形的特征,如果把平行四邊形也圈進來,應該怎樣圈?
生:圈在最外面
(三)自主反思
通過本節課的學習,你收獲了什么?
數學平行教案14
【教學內容】
四年級上冊第98頁練習十八6、7、8、9題及思考題。
【教學目標】
1.通過整理與復習,使學生進一步掌握垂直與平行的特征及畫垂線和平行線的方法。
2.通過動手畫垂線和平行線,培養學生的實踐操作能力,培養學生認真嚴謹的做事態度。
3.進一步發展學生的空間觀念。
【教學重難點】
過直線外的點畫已知直線的垂線和平行線。
【教具學具準備】
多媒體、視頻展示臺。
【教學過程】
一、梳理知識,溝通聯系
教師:同一平面內兩條直線的位置關系有幾種情況?
引導學生思考后回答:同一平面內兩條直線的位置關系有兩種情況:相交和平行,其中垂直是相交中的一種特殊情況。
教師:同學們說得很對,同一平面內的兩條直線要么相交要么平行。哪位同學來說一說:怎樣的相交才是垂直?
學生:相交成直角就是垂直。(板書:相交成直角)
教師:你能畫出兩條互相垂直的直線嗎?
學生動手操作,同時教師在黑板上范畫兩條互相垂直的直線,然后學生比對是否和老師畫法相同。
教師:當兩條直線垂直時,它們的交點叫什么?
學生:垂足。
教師在黑板上相應位置標明垂足,同時要求學生也在所畫的圖形中標明垂足。
教師:那什么又是平行呢?誰來說一說?
學生:同一平面內不相交的兩條直線叫做平行線,組成平行線的兩條直線互相平行。(教師板書:永不相交)
教師:現在請同學們在練習本上任意畫出兩條平行線。
學生動手操作后,展示優秀作品。
以上環節完成后,形成如下板書:
二、基本練習,鞏固知識
1.數學書98頁6題。
學生觀察思考后,指名到臺上視頻展示臺上或上指一指,說一說。
2.數學書98頁7題。
同桌交流后,上臺在視頻展示臺或上指一指,說一說。
3.數學書98頁8題。
學生獨立完成后,指名到視頻展示臺或上匯報展示,說說自己的'操作步驟。
三、拓展延伸,加深理解
1.數學書98頁9題。
學生小組交流后,上臺指一指,說一說,最后展示互相垂直的線。
2.數學書98頁思考題。
學生分組完成后,說一說自己發現了什么?最后展示:平行線間的垂線段處處相等。
四、課堂小結
通過今天的整理與復習,你有哪些新的收獲?
數學平行教案15
教學目標
知識與技能:
1.使學生理解平行四邊形和梯形的概念及特征。
2.使學生了解學過的所有四邊形之間的關系,并會用集合圖表示。
過程與方法:
通過操作活動,使學生經歷認識平行四邊形和梯形的全過程,掌握它們的特征。
情感態度和價值觀:
通過活動,讓學生從中感受到學習的樂趣,體會到成功的喜悅,從而提高學習的興趣。
重點理解平行四邊形和梯形的概念及特征。了解學過的所有四邊形之間的關系,并會用集合圖表示。
難點理解平行四邊形和梯形的概念及特征。用集合圖表示學過的所有四邊形之間的關系。
教具圖形,剪子,七巧板
教學過程
教師導學
一、創設情景感知圖形
1.出示例1,我們認識過平行四邊形,你能說出哪些地方見過平行四邊形?(64頁)
2.在我們美麗的校園中,你能找到哪些四邊形?
梯子的側面-梯形
3.畫出你喜歡的一個四邊形。說一說什么樣的圖形是四邊形?
展示學生畫出的四邊形,請學生標出它們的`名稱。
長方形 平行四邊形
梯形 正方形
4.小組交流:
從四邊形的特點來看,四邊形可以分成幾類?
學生討論交流
二、探究新知
1.歸納平行四邊形和梯形的概念
有什么特點的圖形是平行四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
強調說明:只要四邊形的每組對邊分別平行,就能確定它的每組對邊相等。因此平行四邊形的定義是兩組對邊分別平行的四邊形。
提問:
①生活中你見過這樣的圖形嗎? 它們的外形像什么?
②這些圖形有幾條邊?幾個角?是什么圖形?
③這幾個四邊形有邊有什么特點?
④它是平行四邊形嗎?
⑤你們在量這些圖形時,是否發現它們都有一個共同的特點?如果有,是什么?
只有一組對邊平行的四邊形叫做梯形。
5.現在你有什么問題嗎?
長方形和正方形是平行四邊形嗎?為什么?
6.用集合圖表示四邊形之間的關系。我們學過的長方形、正方形、平行四邊形、剛剛認識的梯形,你能用這個集合圈來表示他們的關系嗎?
【數學平行教案】相關文章:
初中數學平行教案12-28
初一數學的平行教案11-26
數學《認識平行》教案設計08-08
初中數學平行線的特征教案12-29
平行教案01-27
數學知識探索直線平行的條件教案09-07
平行線及平行公理教案09-07
《垂直與平行》的教案06-16
《平行與垂直》教案06-21