初中數學教案15篇[熱門]
作為一名無私奉獻的老師,通常需要準備好一份教案,借助教案可以讓教學工作更科學化。快來參考教案是怎么寫的吧!以下是小編收集整理的初中數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。
初中數學教案1
課 題:幾何畫板簡介
教學目標:1)通過幾何畫板課件演示展示其魅力激起興趣
2)了解幾何畫板初步操作
教學重點:讓學生了解幾何畫板的工作界面
教學難點:能用幾何畫板將三角形分成四等份,并用幾何畫板驗證。 教學過程:
一、概述幾何畫板
幾何畫板是專門為數學學習與教學需要而設計的軟件。有人說它是電子圓規,有人說它是繪圖儀,有人說它是數學實驗室。它號稱二十一世紀的動態幾何。它可幫助我們理解數學,動態地表達數量關系,并可設計出許多有用或有趣的作品。
二、幾何畫板作品展示
三、幾何畫板簡介
1)啟動
開始|程序|幾何畫板|幾何畫板。啟動幾何畫板后將出現 菜單、工具、 畫板。工具(從上到下) 選擇 、畫點、畫圓 、畫線、 文本 、對象信息、 腳本工具目錄。
2)操作初步
1、文件
新畫板 打開一個新的空白畫板。
新腳本 打開一個新的空白腳本窗口。用于錄制畫板的畫圖過程。 打開 打開一個已存在的畫板文件(.gsp)或腳本文件(.gss)。
保存 [保存當前畫板窗口畫板文件或腳本窗口腳本文件],路徑+文件名,確認。
打印預覽
打印
退出
2、 選擇 幾何畫板的操作都是先選定,后操作。
選工具(選擇 畫點 畫圓 畫線 文本 對象信息 腳本工具目錄) 單擊:工具選項。
選選擇方式 移到選擇按左鍵不放→平移/旋轉/縮放;拖曳到平移/旋轉/縮放;放→選定。
功能:移動選定的目標按 平移/旋轉/縮放 方式移動。
選一個目標 鼠標對準畫板中的目標(點、線、圓等),指針變為橫向箭頭,單擊。
選兩個以上目標 法一 第二個及以后,Shift+單擊。
選兩個以上目標 法二 空白處拖曳→虛框;虛框中的目標被選。 選角 選三點:第一、第三點:角兩邊上的點;第二點:頂點。 不選 單擊:空白處。
從多個選中的目標中不選一個 Shift+單擊。
選目標的父母和子女 選定,編輯|選擇父母/或選擇子女。
選所有 編輯|選擇所有。
選畫點/畫圓...,編輯|選擇所有點/圓...。
3、刪除
刪除目標 選目標;Del鍵(注:同時刪除子女目標)。
復原一步 Ctrl+Z = 編輯|復原。
畫板變成空白畫板 Shift+Ctrl+Z = Shift+編輯|復原。
4、顯示
線類型 設置選定的線/軌跡 為 粗線/細線/虛線。應用 使對象更突出。 顏色 設置選定的圖形的顏色。應用 使對象更突出。
字號/字型 設置選定的標注、符號、測算等文字的字號和字型。
字體 設置選定的標注、符號、測算等文字的字體。
顯示/隱藏 顯示/隱藏 選定的目標(Ctrl+H)。
顯示所有隱藏 顯示所有的.隱藏目標。
顯示符號 顯示/隱藏 選定目標的符號。
符號選項 更改 符號/符號序列。
軌跡跟蹤 設置/消除 選定目標為軌跡跟蹤狀態。
動畫 根據選定的目標條件進行動畫運動。
參數設置 角度、弧度、精確度等的設置。
5、對象信息 單擊對象信息→?;單擊對象→簡單信息;雙擊對象→目標信息對話框。
6、快捷鍵 隱藏Ctrl+H顯示符號Ctrl+K軌跡跟蹤Ctrl+T當前目標可操作的內容右鍵。
(以上簡略選講1、2、3)
四、熟悉幾何畫板的界面,了解常用工具的用法,
五、把一個三角形分成四等份:
1)用畫線工具畫一個三形,2)標注:選文本工具,單擊畫好的點,用文本工具雙擊顯示的標簽,可進行修改。
3)選擇“構造”,---“畫中點”
六、驗證面積相等:
1)按住shift鍵,選取點。
2)“構造”---“多邊形內部”。
3)“測算”---“面積”
七、等分線段:
1)畫射線作輔助線。
2)選取一段做標記向量。
3)“變換”---“平移”。
4)“作圖”---“平行線”。
用平行線的性質等分線段。
八、畫基本圖形
1、畫點 選畫點,單擊畫板上一點。(并顯示標簽)
2、畫圓 畫圓的兩種方法及區別。 (設置不同顯示方式)
3、選線段/射線/直線 選畫線;按左鍵不放→線段/射線/直線
九、課后反思
在圖中標注文本文字,用輔助線把一線段如何分為四等份
初中數學教案2
教學目標
(一)知識認知要求
1、回顧收集數據的方式、
2、回顧收集數據時,如何保證樣本的代表性、
3、回顧頻率、頻數的概念及計算方法、
4、回顧刻畫數據波動的統計量:極差、方差、標準差的概念及計算公式、
5、能利用計算器或計算機求一組數據的算術平均數、
(二)能力訓練要求
1、熟練掌握本章的知識網絡結構、
2、經歷數據的收集與處理的過程,發展初步的統計意識和數據處理能力、
3、經歷調查、統計等活動,在活動中發 展學生解決問題的能力、
(三)情感與價值觀要求
1、通過對本章內容的回顧與思考,發展學 生用數學的意識、
2、在活動中培養學生團隊精神、
教學重點
1、建立本章的知識框架圖、
2、體會收集數據的方式,保證樣本的代表性,頻率、頻數及刻畫數據離散程度的統 計量在實際情境中的意義和應用、
教學難點
收集數據的方式、抽樣時保證樣本的代表性、頻率、頻數、刻畫數據離散程度的統計量在不同情境中的應用、
教學過程
一、導入新課
本章的內容已全部學完、現在如何讓你調查一個情況、并且根據你獲得數據,分析整理,然后寫出調查報告,我想大家現在心里應該有數、
例如,我們要調查一下“上網吧的人的年齡”這一情況,我們應如何操作?
先選擇調查方式,當然這個調查應采用抽樣調查的方式,因為我們不可能調查到所有上網吧的人,何況也沒有必要、
同學們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調查,然后再作統計分析,然后把調查結果匯報上來,我們可以比一比,哪一個組表現最好?
二、講授新課
1、舉例說明收集數據的方式主要有哪幾種類型、
2、抽樣調查時,如何保證樣本的代表性?舉例說明、
3、舉出與頻數、頻率有關的幾個生活實例?
4、刻畫數據波動的統計量有 哪些?它們有什么作用?舉例說明、
針對上面的幾個問題,同學們先獨 立思考,然后可在小組內交流你的想法,然后我們每組選出代表來回答、
(教師可參與到學生的討論中,發現同學們前面知識掌握不好的地方,及時補上)、
收集數據的方式有兩種類型:普查和抽樣調查、
例如:調查我校八年級同學每天做家庭作業的時間,我們就可以用普查的形式、
在這次調查中,總體:我校八年級全體學生每天做家庭作業的'時間;個體:我校八年級每個學生每天做家庭作業的時間、
用普查的方式可以直接獲得總體情況、但有時總體中個體數目太多,普查的工作量較大;有時受客觀條件的限制,無法對所有個體進行普查;有時調查具有破壞性,不允許普查,此時可用抽樣調查、
例如把上面問題改成“調查全國八年級同學每天做家庭作業的時間”,由于個體數目太多,普查的工作量也較大,此時就采取抽樣調查,從總體中抽取一個樣本,通過樣本的特征數字來估計總體,例如平均數、中位數、眾數 、極差、方差等、
上面我們回顧了為了了解某種情況而采取的調查方式:普查和抽樣調查,但抽樣調查必須保證數據具有代表性,因為只 有這樣,你抽取的樣本才能體現出總體的情況,不然,就會失去可靠性和準確性、
例如對我們班里某門學科的成績情況,有時不僅知道平均成績,還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時,我們只要看一下每個學生的成績落在哪一個分數段,落在這個分數段的分數有幾個,表明數據落在這個小組的頻數就是多少,數據落在這個小組的頻率就是頻數與數據總個數的商、
刻畫數據波動的統計量有極差、方差、標準差、它們是用來描述一組數據的穩定性的、一般而言,一組數據的極差、方差或標準差越小,這組數據就越穩定、
例如:某農科所在8個試驗點,對甲、乙兩種玉米進行對比試驗,這兩種玉米在各試驗點的畝產量如下(單位:千克)
甲:450 460 450 430 450 460 440 460
乙:440 470 460 440 430 450 470 4 40
在這個試驗點甲、乙兩種玉米哪一種產量比較穩定?
我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩定、
還可以用方差來比較哪一種玉米穩定、
s甲2=100,s乙2=200、
s甲2<s乙2,所以甲種玉米的產量較穩定、
三、建立知識框架圖
通 過剛才的幾個問題回顧思考了我們這一章的重點內容,下面構建本章的知識結構圖、
四、隨堂練習
例1一家電腦生產廠家在某城市三個經銷本廠產品的大商場調查,產品的銷量占這三個 大商場同類產品銷量的40%、由此在廣告中宣傳,他們的產品在國內同類產品的銷售量占40%、請你根據所學的統計知識,判斷該宣傳中的數據是否可靠:________,理由是________、
分析:這是一道判斷說理型題,它要求借助于統計知識,作出科學的判斷, 同時運 用統計原理給予準確的解釋、因此,該電腦生產廠家憑借挑選某城市經銷本產品情況,斷然說他們的產品在國內同類產品的銷量占40%,宣傳中的數據是不可靠的,其理由有二:第一,所取樣本容量太小;第二,樣本抽取缺乏代表性和廣泛性、
例2在舉國上下眾志成城抗擊“非典” 的斗爭中,疫情變化牽動著全國人民的心 、請根據下面的疫情統計圖表回答問題:
(1)圖10是5月11日至5月29日全國疫情每天新增數據統計走勢圖,觀察后回答:
①每天新增確診病例與新增疑似病例人數之和超過100人的天數共有__________天;
②在本題的統計中,新增確診病例的人數的中位數是___________;
③本題在對新增確診病例的統計中,樣本是__________,樣本容量是__________、
(2)下表是我國一段時間內全國確診病例每天新增的人數與天數的頻率統計表、(按人數分組)
①100人以下的分組組距是________;
②填寫本統計表中未完成的空格;
③在統計的這段時期中,每天新增確診
病例人數在80人以下的天數共有_________天、
解:(1)①7 ②26 ③5月11日至29日每天新增確診病例人數 19
(2)①10人 ②11 40 0、125 0、325 ③25
五.課時小結
這節課我們通過回顧與思考這一章的重點內容,共同建立的知識框架圖,并進一步用統計的思想和知識解決問題,作出決策、
六.課后作業:
七.活動與探究
從魚塘捕得同時放養的草魚240尾,從中任選9尾,稱得每尾魚的質量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計這240尾魚的總質量大約是
A、300克 B、360千克C、36千克 D、30千克
初中數學教案3
①結合你對一元一次方程中的一次的理解,說一說你對一次函數中的“一次”的理解. ②k可以是怎樣的數?
③你怎樣認識一次函數和正比例函數的關系?
一個常數b的和即 Y=kx+b 定義:一般地,形
如
Y=kx+b( k,b 是常數,k≠0 )的函數,叫做一次函數, 當
b=0時,
Y=kx+b即Y=kx,所以說正比例函數是一種特殊的一次函數。
例1、下列函數中,Y是X的一次函數的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
學生獨立
A①②③B①③④C①②④D①②③④
例2、寫出下列各題中x與y之間的關系式,并判
解釋與應用
斷,y是否為x的一次函數?是否為正比例函數?①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的`關系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關系:③一棵樹現在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關系式
初中數學教案4
1.知識結構
2.重點和難點分析
重點:本節的重點是平行四邊形的概念和性質.雖然平行四邊形的概念在小學學過,但對于概念本質屬性的理解并不深刻,為了加深學生對概念的理解,為以后學習特殊的平行四邊形打下基礎,所以教師不要忽視平行四邊形的概念教學.平行四邊形的性質是以后證明四邊形問題的基礎,也是學好全章的關鍵.尤其是平行四邊形性質定理的推論,推論的應用有兩個條件:
一個是夾在兩條平行線間;
一個是平行線段,具備這兩個條件才能得出一個結論平行線段相等,缺少任何一個條件結論都不成立,這也是學生容易犯錯的地方,教師要反復強調.
難點:本節的難點是平行四邊形性質定理的靈活應用.為了能熟練的應用性質定理及其推論,要把性質定理和推論的條件和結論給學生講清楚,哪幾個條件,決定哪個結論,如何用數學符號表示即書寫格式,都要在講練中反復強化.
3.教法建議
(1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調動學生的積極性.自己設計了一個動畫,建議老師們用它作為本節的引入,既可以激發學生的學習興趣,又可以激活學生的思維.
(2)在生產或生活中,平行四邊形是常見圖形之一,教師可以多給學生提供一些平行四邊形的圖片,增加學生的感性認識,然后,讓他們自己總結出平行四邊形的定義,教師最后做總結.平行四邊形是特殊的四邊形,要判定一個四邊形是不是平行四邊形,要判斷兩點:首先是四邊形,然后四邊形的兩組對邊分別平行.平行四邊形的定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質.
(3)對于教師來說講課固然重要,但講完課后有目的的強化訓練也是不可缺少的,通過做題,幫助學生更好的理解所講內容,也就是我們平時說的要反思回顧,總結深化.
平行四邊形及其性質第一課時
一、素質教育目標
(一)知識教學點
1.使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.
2.掌握平行四邊形的性質定理1、2.
3.并能運用這些知識進行有關的證明或計算.
(二)能力訓練點
1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉化思想.
2.通過推導平行四邊形的性質定理的過程,培養學生的推導、論證能力和邏輯思維能力.
(三)德育滲透點
通過要求學生書寫規范,培養學生科學嚴謹的學風.
(四)美育滲透點
通過學習,滲透幾何方法美和幾何語言美及圖形內在美和結構美
二、學法引導
閱讀、思考、講解、分析、轉化
三、重點·難點·疑點及解決辦法
1.教學重點:平行四邊形性質定理的應用
2.教學難點:正確理解兩條平行線間的距離的概念和運用性質定理2的推論;在計算或證明中綜合應用本節前一章的知識.
3.疑點及解決辦法:關于性質定理2的推論;兩點的距離,點到直線的距離,兩平行直線中間的距離的區別與聯系,注重對概念的教學,使學生深刻理解上述概念,搞清它們之間的關系;平行四邊形的高有關問題.
四、課時安排
2課時
五、教具學具準備
教具(做兩個全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具
六、師生互動活動設計
教師復習提問,學習思考口答;教師設疑引思,學生討論分析;師生共同總結結論,教師示范講解,學生達標練習
第一課時
七、教學步驟
【復習提問】
1.什么叫做四邊形?什么叫四邊形的一組對邊?
2.四邊形的兩組對邊在位置上有幾種可能?
(教師隨著學生回答畫出圖1)
圖1
【引入新課】
在四邊形中,我們常見的實用價值最大的就是平行四邊形,如汽車的防護鏈,無軌電車的擊電桿都是平行四邊形的形象,平行四邊形有什么性質呢?這是這節課研究的主要內容(寫出課題).
【講解新課】
1.平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形.
注意:一個四邊形必須具備有兩組對邊分別平行才是平行四邊形,反過來,平行四邊形就一定是有“兩組對邊分別平行”的一個四邊形.因此定義既是平行四邊形的一個判定方法(定義判定法)又是平行四邊形的一個性質.
2.平行四邊形的表示:平行四邊形用符號“
”表示,如圖1就是平行四邊形
,記作“
”.
align=middle>
圖1
3.平行四邊形的'性質
講解平行四邊形性質前必須使學生明確平行四邊形從屬于四邊形,因此它具有四邊形的一切性質(共性),同時它又是特殊的四邊形,當然還有其特性(個性),下面介紹的性質就是其特性,這是一般四邊形所不具有的.
平行四邊形性質定理1:平行四邊形的對角相等.
平行四邊形性質定理2:平行四邊形對邊相等.
(教具用兩個全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個定理的方法.如圖2)
圖2如圖3
所以四邊形是平行四邊形,所以.由此得到
推論:夾在兩條平行線間的平行線段相等.
圖3
要注意:必須有兩個平行,即夾兩條平行線段的兩條直線平行,被夾的兩條線段平行,缺一不可,如圖4中的幾種情況都不可以推出圖4
4.平行線間的距離
從推論可以知道,如果兩條直線平行,那么從一條直線上所有各點到另一條直線的距離相等,如圖5.
我們把兩條平行線中一條直線上任意一點到另一條直線的距離,叫做平行線的距離.
圖5
注意:(1)兩相交直線無距離可言.
(2)連結兩點間的線段的長度叫兩點間的距離,從直線外一點到一條直線的垂線段的長,叫點到直線的距離.兩條平行線中一條直線上任意一點到另一條直線的距離,叫做這兩條平行線的距離,一定要注意這些概念之間的區別與聯系.
例1 已知:如圖1,
初中數學教案5
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數能使兩邊的值相等,這個數就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學們動手試一試,大家發現了什么問題?
同樣,用檢驗的方法也很難得到方程的'解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習
1、教科書第3頁練習1、2。
2、補充練習:檢驗下列各括號內的數是不是它前面方程的解。
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結。本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業。教科書第3頁,習題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學目的
通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數的值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學過程
一、引入
上一節課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節課,我們將學習如何將方程變形。
二、新授
讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。
測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態時,顯然兩邊的質量相等。
如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯想到方程的變形嗎?
讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。
初中數學教案6
一、教材的地位與作用
《二元一次方程》是九年義務教育人教版教材七年級下冊第四章《二元一次方程組》的第一節。在此之前學生已經學習了一元一次方程,這為本節的學習起了鋪墊的作用。本節內容是二元一次方程的起始部分,因此,在本章的教學中,起著承上啟下的地位。
二、教學目標
(一)知識與技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。
(二)數學思考:
體會學習二元一次方程的必要性,學會獨立思考,體會數學的轉化思想和主元思想。
(三)問題解決:
初步學會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。
(四)情感態度:
培養學生發現意識和能力,使其具有強烈的好奇心和求知欲。
三、教學重點與難點
教學重點:二元一次方程及其解的概念。
教學難點:二元一次方程的概念里“含未知數的項的次數”的理解;把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。
四、教法與學法分析
教法:情境教學法、比較教學法、閱讀教學法。
學法:閱讀、比較、探究的學習方式。
五、教學過程
1.創設情境,引入新課
從學生熟悉的姚明受傷事件引入。
師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。
(1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?
(2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進了幾個球嗎?(罰進1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎?
設姚明投進了x個兩分球,罰進了y個球,可列出方程。
(3)在雄鹿隊與火箭隊的比賽中易建聯全場總共得了19分,其中罰球得了3分。你知道他分別投進幾個兩分球、幾個三分球嗎?
設易建聯投進了x個兩分球,y個三分球,可列出方程。
師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎?
從而揭示課題。
(設計意圖:第一個問題主要是讓學生體會一元一次方程是解決實際問題的數學模型,從而回顧一元一次方程的`概念;第二、三問題設置的主要目的是讓學生體會到當實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數學來源于生活,又應用于生活,通過創設輕松的問題情境,點燃學習新知識的“導火索”,引起學生的學習興趣,以“我要學”的主人翁姿態投入學習,而且“會學”“樂學”。)
2.探索交流,汲取新知
概念思辨,歸納二元一次方程的特征
師:那到底什么叫二元一次方程?(學生思考后回答)
師:翻開書本,請同學們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的概念有什么區別嗎?(同學們思考后回答)
師:根據概念,你覺得二元一次方程應具備哪幾個特征?
活動:你自己構造一個二元一次方程。
快速判斷:下列式子中哪些是二元一次方程?
①x2+y=0②y=2x+
4③2x+1=2x ④ab+b=4
(設計意圖:這一環節是本課設計的重點,為加深學生對“含有未知數的項的次數”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發學生對“項的次數”的思考,進而完善學生對二元一次方程概念的理解,通過學生自己舉例子的活動去把“項的次數”形象化。)
二元一次方程解的概念
師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯可能投中幾個兩分球,幾個三分球嗎?
師:你是怎么考慮的?(讓學生說說他是如何得到x和y的值的,怎么證明自己的這對未知數的取值是對的)利用一個學生合理的解釋,引導學生類比一元一次方程的解的概念,讓學生歸納出二元一次方程的解的概念及其記法。(學生看書本上的記法)
使二元一次方程兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。(設計意圖:通過引導學生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的本質:使方程左右兩邊相等的一對未知數的取值。引導學生看書本,目的是讓學生在記法上體會“一對未知數的取值”的真正含義。)
二元一次方程解的不唯一性
對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎?師:這些解你們是如何算出來的?
(設計意圖:設計此環節,目的有三個:首先,是讓學生學會如何檢驗一對未知數的取值是二元一次方程的解;其次是讓學生體會到二元一次方程的解的不唯一性;最后讓學生感受如何得到一個正確的解:只要取定一個未知數的取值,就可以代入方程算出另一個未知數的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x+2y=10,
(1)當x=2時,求所對應的y的值;
(2)取一個你自己喜歡的數作為x的值,求所對應的y的值;
(3)用含x的代數式表示y;
(4)用含y的代數式表示x;
(5)當x=負2,0時,所對應的y的值是多少?
(6)寫出方程3x+2y=10的三個解.
(設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數的代數式表示另一個未知數,然后把它與原方程比較,把一個未知數的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數的代數式表示另一個未知數”的過程,實質是解一個關于y的一元一次方程,滲透數學的主元思想。以此突破本節課的難點。)
大顯身手:
課內練習第2題
梳理知識,課堂升華
本節課你有收獲嗎?能和大家說說你的感想嗎?3.作業布置
必做題:書本作業題1、2、3、4。
選做題:書本作業題5、6。
設計說明
本節授課內容屬于概念課教學。數學學科的內容有其固有的組成規律和邏輯結構,它總是由一些最基本的數學概念作為核心和邏輯起點,形成系統的數學知識,所以數學概念是數學課程的核心。只有真正理解數學概念,才能理解數學。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關鍵如何理解它的概念,因此本節課采用先讓同學自己試著下定義,然后與教材中的完整定義相互比較,發現不同點,進而理解“含有未知數的項的次數都是一次”這句話的內涵。在二元一次方程的解的教學過程中,采用的是讓學生體會“一個解、不止一個解、無數個解”的漸進過程,感受到用一個二元一次方程并不能求出一對確定的未知數的取值,從而讓學生產生有后續學習的愿望。
在講授用含一個未知數的代數式表示另一個未知數的時候,采用“特殊、一般、特殊”的教學流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,
此時注意的聚焦點是二元一次方程;其次學生歸納先定一個未知數的取值,代入原方程求另一個未知數的值,此時注意的聚焦點是一元一次方程;然后教師引導回到二元一次方程,假如x是一個常數,那么這個方程可以看成是一個關于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數的代數式表示另一個未知數”在求值過程中的簡潔性,強化這種代數形式。另外,在引導學生推導“用含一個未知數的代數式表示另一個未知數”的過程中,滲透數學的主元思想和轉化思想。
初中數學教案7
教學 建議
一、知識結構
二、重點、難點分析
本節 教學 的重點是不等式的解集的概念及在數軸上表示不等式的解集的方法.難點為不等式的解集的概念.
1.不等式的解與方程的解的意義的異同點
相同點:定義方式相同(使方程成立的未知數的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數不同,一般地,一個不等式有無數多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當 取大于 的數時,不等式 都成立,所以不等式 有無數多個解.
2.不等式的解與解集的區別與聯系
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數的某個值,而不等式的解集,是指滿足這個不等式的未知數的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數值,都能使不等式成立;第二,解集外的任何一個數值,都不能使不等式成立.
3.不等式解集的表示方法
(1)用不等式表示
一般地,一個含未知數的不等式有無數多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
(2)用數軸表示
如不等式 的解集 ,可以用數軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數軸上,右邊的點表示的數總比左邊的點表示的數大,所以在數軸上表示不等式的解集時應牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
一、素質 教育 目標
(一)知識 教學 點
1.使學生了解不等式的解集、解不等式的概念,會在數軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
(二)能力訓練點
通過 教學 ,使學生能夠正確地在數軸上表示出不等式的解集,并且能把數軸上的某部分數集用相應的不等式表示.
(三)德育滲透點
通過講解不等式的“解集”與方程“解”的關系,向學生滲透對立統一的辯證觀點.
(四)美育滲透點
通過本節課的學習,讓學生了解不等式的解集可利用圖形來表達,滲透數形結合的數學美.
二、學法引導
1. 教學 方法:類比法、引導發現法、實踐法.
2.學生學法:明確不等式的解與解集的區別和聯系,并能熟練地用數軸表示不等式的解集,在數軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
三、重點·難點·疑點及解決辦法
(一)重點
1.不等式解集的概念.
2.利用數軸表示不等式的解集.
(二)難點
正確理解不等式解集的概念.
(三)疑點
弄不清不等式的解集與方程的解的區別、聯系.
(四)解決辦法
弄清楚不等式的解與解集的概念.
四、課時安排
一課時.
五、教具學具準備
投影儀或電腦、自制膠片、直尺.
六、師生互動活動設計
(一)明確目標
本節課重點學習不等式的解集,解不等式的概念并會用數軸表示不等式的解集.
(二)整體感知
通過枚舉法來形象直觀地推出不等式的解集,再給出不等式解集的概念,從而更準確地讓學生掌握該概念.再通過師生的互動學習用數軸表示不等式的解集,從而為今后求不等式組的解集打下良好的基礎.
(三) 教學 過程
1.創設情境,復習引入
(1)根據不等式的基本性質,把下列不等式化成 或 的形式.
① ②
(2)當 取下列數值時,不等式 是否成立?
l,0,2,-2.5,-4,3.5,4,4.5,3.
學生活動:獨立思考并說出答案:(1)① ② .(2)當 取1,0,2,-2.5,-4時,不等式 成立;當 取3.5,4,4.5,3時,不等式 不成立.
大家知道,當 取1,2,0,-2.5,-4時,不等式 成立.同方程類似,我們就說1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3這些使不等式 不成立的數就不是不等式 的解.
對于不等式 ,除了上述解外,還有沒有解?解的個數是多少?將它們在數軸上表示出來,觀察它們的分布有什么規律?
學生活動:思考討論,嘗試得出答案,指名板演如下:
【教法說明】啟發學生用試驗方法,結合數軸直觀研究,把已說出的不等式 的`解2,0,1,-2.5,-4用“實心圓點”表示,把不是 的解的數值3.5,4,4.5,3用“空心圓圈”表示,好像是“挖去了”.
師生歸納:觀察數軸可知,用“實心圓點”表示的數都落在3的左側,3和3右側的數都用空心圓圈表示,從而我們推斷,小于3的每一個數都是不等式 的解,而大于或等于3的任何一個數都不是 的解.可以看出,不等式 有無限多個解,這無限多個解既包括小于3的正整數、正小數、又包括0、負整數、負小數;把不等式 的無限多個解集中起來,就得到 的解的集會,簡稱不等式 的解集.
2.探索新知,講授新課
(1)不等式的解集
一般地,一個含有未知數的不等式的所有的解,組成這個不等式的解的集合,簡稱這個不等式的解集.
①以方程 為例,說出一元一次方程的解的情況.
②不等式 的解的個數是多少?能一一說出嗎?
(2)解不等式
求不等式的解集的過程,叫做解不等式.
解方程 求出的是方程的解,而解不等式 求出的則是不等式的解集,為什么?
學生活動:觀察思考,指名回答.
教師 歸納:正是因為一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有無限多個,無法一一列舉出來,因而只能用不等式 或 揭示這些解的共同屬性,也就是求出不等式的解集.實際上,求某個不等式的解集就是運用不等式的基本性質,把原不等式變形為 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .
【教法說明】學生對一元一次方程的解印象較深,而不等式與方程的相同點較多,因而易將“不等式的解集”與“方程的解”混為一談,這里設置上述問題,目的是使學生弄清“不等式的解集”與“方程的解”的關系.
(3)在數軸上表示不等式的解集
①表示不等式 的解集:( )
分析:因為未知數的取值小于3,而數軸上小于3的數都在3的左邊,所以就用數軸上表示3的點的左邊部分來表示解集 .注意未知數 的取值不能為3,所以在數軸上表示3的點的位置上畫空心圓圈,表示不包括3這一點,表示如下:
②表示 的解集:( )
學生活動:獨立思考,指名板演并說出分析過程.
分析:因為未知數的取值可以為-2或大于-2的數,而數軸上大于-2的數都在-2右邊,所以就用數鋼上表示-2的點和它的右邊部分來表示.如下圖所示:
注意問題:在數軸上表示-2的點的位置上,應畫實心圓心,表示包括這一點.
【教法說明】利用數軸表示不等式解的解集,增強了解集的直觀性,使學生形象地看到不等式的解有無限多個,這是數形結合的具體體現. 教學 時,要特別講清“實心圓點”與“空心圓圈”的不同用法,還要反復提醒學生弄清到底是“左邊部分”還是“右邊部分”,這也是學好本節內容的關鍵.
3.嘗試反饋,鞏固知識
(1)不等式的解集 與 有什么不同?在數軸上表示它們時怎樣區別?分別在數軸上把這兩個解集表示出來.
(2)在數軸上表示下列不等式的解集.
① ② ③ ④
(3)指出不等式 的解集,并在數軸上表示出來.
師生活動:首先學生在練習本上完成,然后 教師 抽查,最后與出示投影的正確答案進行對比.
【教法說明】 教學 時,應強調2.(4)題的正確表示為:
我們已經能夠在數軸上準確地表示出不等式的解集,反之若給出數軸上的某部分數集,還要會寫出與之對應的不等式的解集來.
4.變式訓練,培養能力
(1)用不等式表示圖中所示的解集.
【教法說明】強調“· ”“ °”在使用、表示上的區別.
(2)單項選擇:
①不等式 的解集是( )
A. B. C. D.
②不等式 的正整數解為( )
A.1,2 B.1,2,3 C.1 D.2
③用不等式表示圖中的解集,正確的是( )
A. B. C. D.
④用數軸表示不等式的解集 正確的是( )
學生活動:分析思考,說出答案.( 教師 給予糾正或肯定)
【教法說明】此題以搶答形式茁現,更能激發學生探索知識的熱情.
(四)總結、擴展
學生小結, 教師 完善:
1.? 本節重點:
(1)了解不等式的解集的概念.
(2)會在數軸上表示不等式的解集.
2.注意事項:
弄清“ · ”還是“ °”,是“左邊部分”還是“右邊部分”.
七、布置作業
初中數學教案8
復習目標:
(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)會解一元一次方程。
(3)會根據具體問題中的數量關系列出一元一次方程并求解。
重點、難點:
1.重點:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
會用一元一次方程解決實際問題。
2.難點:
一元一次方程的解法的靈活應用。
尋找實際問題中的等量關系。
【典型例題】
例1.
分析: 明確一元一次方程的概念。方程中含有一個未知數,未知數的次數是1,且含有未知數的式子為整式,未知數的系數不為0。
在這里特別注意:未知數的次數及系數。
這三個方程中含有兩個未知數x、y,要想成為一元一次方程就要使其中一個未知數的系數為0。
解:
例2.
分析: 此題要明確兩點:(1)當方程中含有多個字母時,指出關于哪個字母的方程,這個字母就是方程的未知數,而其它的字母是代替已知數的字母系數,這類方程也叫字母系數方程。(2)方程的解,即使方程左右兩邊相等的未知數的值。
此題從問題出發,求解關于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是關于y的方程的解,即關于y的方程中字母y=1,因此可將y=1代入方程,從而求出m的值。
解:
將m=1代入關于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步驟為以上五步,但在解方程時,要注意靈活運用。
例4.
分析: 此題的括號較多,如果按照一般的做法先去小括號,再去中括號,最后去大括號的方法比較麻煩,所以要觀察分析方程找一種比較簡單的方法。
解:
例5.
分析: 此題中分母出現小數,如果用一般的方法先去分母,則比較麻煩,公分母就不好找,所以采取一個巧妙的方法,先利用“分數的基本性質”將方程中分母中的小數化為整數,再用去分母……解之。
解:
注:用分數的基本性質化簡用的是分子、分母擴大相同倍數分數值不變,與去分母不同。
解:
例6.已知某鐵路橋長1000米,現有列火車從橋上通過,測得火車從開始上橋到完全過橋共用1分鐘,整個火車完全在橋上的.時間為40秒,求火車的速度。
分析: 列方程解應用題的關鍵要找出題目中的等量關系,而由題意可知,此題有兩個不變的量,即車的速度和車身的長度。在題目中不變的量,即可為等量,從而列出方程。例如以車身長度為等量,可列方程,設車的速度為xm/s,60x-1000=1000-40x,以車的速度為等量,可列方程,設車身長為xm
解一: 設車的速度為xm/s
經檢驗,符合題意。
答: 車的速度為20m/s。
解二: 設車身的長度為xm
經檢驗,符合題意。
答: 車的速度為(1000+200)/60=20m/s
例7.某音樂廳五月初決定在暑假期間舉辦學生專場音樂會,入場券分為團體票和零售票
售票的一半。如果在六月份內,團體票按每張16元出售,并計劃在六月份售完全部余票,那么零售票應按每張多少元出售才能使兩個月的票款收入持平?
分析: 此題的等量關系比較好找,即五六月份的票款相等,但團體票及零售票的張數不知道,可用字母表示出來,設而不求。
解: 設團體票共2a張,零售票共a張,零售票價x元
經檢驗,符合題意。
答: 零售票價為19.2元。
初中數學教案9
一、檢查反饋
本次檢查大多數教師都比較重視,檢查內容完整、全面。現將檢查情況總結如下教案方面的特點與不足。
特點:
1、絕大多數教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文李雅芳等能突出對學科素養的高度關注。教師撰寫的課后反思能體現教師對教材處理的新方法,能側重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現課堂教學的反思意識,反思深刻、務實、有針對性。
2、注重選擇恰當的教學方法,注重在靈活多樣的教學方法中培養學生的.合作意識和創新精神。
3、教案能體現多媒體教學手段,注重培養學生的探究精神和創新能力。
不足:
1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業方面的特點與不足
特點:
1、能按進度布置作業,作業設置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業中的錯誤做法及糾正措施。
3、學生在書寫方面有很大進步。從檢查可以發現教師對學生作業的書寫格式有明確的要求。
不足:
1、對于學生書寫的工整性,還需加強教育。
2、教師在批閱作業時,要稍細心些,發現問題就讓學生當時改正,學生也就會逐漸養成做事認真的習慣。
初中數學教案10
教學目標
1.使學生會用代入消元法解二元一次方程組;
2.理解代入消元法的基本思想體現的“化未知為已知”,“變陌生為熟悉”的化歸思想方法;
3.在本節課的教學過程中,逐步滲透樸素的辯證唯物主義思想。
教學重點和難點
重點:用代入法解二元一次方程組。
難點:代入消元法的基本思想。
課堂教學過程設計
一、從學生原有的認知結構提出問題
1.誰能造一個二元一次方程組?為什么你造的方程組是二元一次方程組?
2.誰能知道上述方程組(指學生提出的方程組)的解是什么?什么叫二元一次方程組的解?
3.上節課我們提出了雞兔同籠問題:(投影)一個農民有若干只雞和兔子,它們共有50個頭和140只腳,問雞和兔子各有多少?設農民有x只雞,y只兔,則得到二元一次方程組
對于列出的這個二元一次方程組,我們如何求出它的解呢?(學生思考)教師引導并提出問題:若設有x只雞,則兔子就有(50-x)只,依題意,得2x+4(50-x)= 140從而可解得,x=30,50-x=20,使問題得解。
問題:從上面一元一次方程解法過程中,你能得出二元一次方程組串問題,進一步引導學生找出它的解法)
(1)在一元一次方程解法中,列方程時所用的等量關系是什么?
(2)該等量關系中,雞數與兔子數的表達式分別含有幾個未知數?
(3)前述方程組中方程②所表示的等量關系與用一元一次方程表示的等量關系是否相同?
(4)能否由方程組中的方程②求解該問題呢?
(5)怎樣使方程②中含有的兩個未知數變為只含有一個未知數呢?(以上問題,要求學生獨立思考,想出消元的方法)結合學生的回答,教師作出講解。
由方程①可得y=50-x③,即兔子數y用雞數x的.代數式50-x表示,由于方程②中的y與方程①中的y都表示兔子的只數,故可以把方程②中的y用(50-x)來代換,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30。
將x=30代入方程③,得y=20。
即雞有30只,兔有20只。
本節課,我們來學習二元一次方程組的解法。
二、講授新課例1解方程組
分析:若此方程組有解,則這兩個方程中同一個未知數就應取相同的值。因此,方程②中的y就可用方程①中的表示y的代數式來代替。解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3。把x=3代入①,得y=-2。
(本題應以教師講解為主,并板書,同時教師在最后應提醒學生,與解一元一次方程一樣,要判斷運算的結果是否正確,需檢驗。其方法是將所求得的一對未知數的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是否相等。檢驗可以口算,也可以在草稿紙上驗算)教師講解完例1后,結合板書,就本題解法及步驟提出以下問題:
1.方程①代入哪一個方程?其目的是什么?
2.為什么能代入?
3.只求出一個未知數的值,方程組解完了嗎?
4.把已求出的未知數的值,代入哪個方程來求另一個未知數的值較簡便?在學生回答完上述問題的基礎上,教師指出:這種通過代入消去一個未知數,使二元方程轉化為一元方程,從而方程組得以求解的方法叫做代入消元法,簡稱代入法。例2解方程組
分析:例1是用y=1-x直接代入②的。例2的兩個方程都不具備這樣的條件(即用含有一個未知數的代數式表示另一個未知數),所以不能直接代入。為此,我們需要想辦法創造條件,把一個方程變形為用含x的代數式表示y(或含y的代數式表示x)。那么選用哪個方程變形較簡便呢?通過觀察,發現方程②中x的系數為1,因此,可先將方程②變形,用含有y的代數式表示x,再代入方程①求解。解:由②,得x=8-3y,③把③代入①,得(問:能否代入②中?)
2(8-3y)+5y=-21,-y=-37,所以y=37。
(問:本題解完了嗎?把y=37代入哪個方程求x較簡單?)把y=37代入③,得x= 8-3×37,所以x=-103。
(本題可由一名學生口述,教師板書完成)
三、師生共同小結
在與學生共同回顧了本節課所學內容的基礎上,教師著重指出,因為方程組在有解的前提下,兩個方程中同一個未知數所表示的是同一個數值,故可以用它的等量代換,即使“代入”成為可能。而代入的目的就是為了消元,使二元方程轉化為一元方程,從而使問題最終得到解決。
初中數學教案11
教學目標:
1、知識與技能:(1)通過學生熟悉的問題情景,以過探索有理數減法法則得出的過程,理解有理數減法法則的合理性。
(2)能熟練進行有理數的減法法則。
2、過程與方法
通過實例,歸納出有理數的減法法則,培養學生的邏輯思維能力和運算能力,通過減法到加法的轉化,讓學生初步體會人歸的數學思想。
重點、難點
1、重點:有理數減法法則及其應用。
2、難點:有理數減法法則的應用符號的改變。
教學過程:
一、創設情景,導入新課
1、有理數加法運算是怎樣做的?(-5)+3= —3+(—5)=
—3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?
導語:可見,有理數的減法運算在現實生活中也有著很廣泛的應用。(出示課題)
二、合作交流,解讀探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?
3、通過以上列式,你能發現減法運算與加法運算的關系嗎?
(學生分組討論,大膽發言,總結有理數的減法法則)
減去一個數等于加上這個數的'相反數
教師提問、啟發:(1)法則中的“減去一個數”,這個數指的是哪個數?“減去”兩字怎樣理解?(2)法則中的“加上這個數的相反數”“加上”兩字怎樣理解?“這個數的相反數”又怎樣理解?(3)你能用字母表示有理數減法法則嗎?
三、應用遷移,鞏固提高
1、P.24例1 計算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、課內練習:P.241、2、3
3、游戲:兩人一組,用撲克牌做有理數減法運算游戲(每人27張牌,黑牌點數為正數,紅牌點數為負數,王牌點數為0。每人每次出一張牌,兩人輪流先出(先出者為被減數),先求出這兩張牌點數之差者獲勝,直至其中一人手中無牌為止)。
四、總結反思
(1) 有理數減法法則:減去一個數,等于加上這個數的相反數。
(2) 有理數減法的步驟:先變為加法,再改變減數的符號,最后按有理數加法法則計算。
五、作業
P.27習題1.4A組1、2、5、6
備選題
填空:比2小-9的數是 。
а比а+2小 。
若а小于0,е是非負數,則2а-3е 0。
初中數學教案12
教學目標:
1、通過解題,使學生了解到數學是具有趣味性的。
2、培養學生勤于動腦的習慣。
教學過程:
一、出示趣味題
師:老師這里有一些有趣的問題,希望大家開動腦筋,積極思考。
1、小衛到文具店買文具,他買毛筆用去了所帶錢的一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問小衛原有( )錢?
2、蘋蘋做加法,把一個加數22錯寫成12,算出結果是48,問正確結果是( )。
3、小明做減法,把減數30寫成20,這樣他算出的得數比正確得數多
( ),如果小明算出的'結果是10,正確結果是( )。
4、同學們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種
辦法來用△表示。
5、把一段布5米,一次剪下1米,全部剪下要( )次。
6、李小松有10本本子,送給小剛2本后,兩人本子數同樣多,小剛原來
有( )本本子。
二、小組討論
三、指名講解
四、評價
1、同學互評
2、老師點評
五、小結
師:通過今天的學習,你有哪些收獲呢?
初中數學教案13
初中數學分層次教學案例
【案例主題:】學生參與教學,體現了現代教學理念:活動、合作、自由、民主、創新。
【背景:】我在進行數學七年級上冊圖形的認識的應用教學時,處理定理時,隨著教學過程的深入,很有感想:??
例題:課本p123證明兩個角之間的關系,
請同學們總結一下他們可能出現的情況。
【活動過程】師:誰能總結一下判定兩個角比較大小的方法?(學生都在緊張的思考中)(突然間,我發現一名平時學習較困難的學生閆家銜這次第一個舉起了手,很驚奇,便馬上讓他發言了。也有了我思想上的一次飛躍。)
生:我認為前面,度量,而剛才第一條,第二條的疊合法。(這時,教室里鴉雀無聲,個別同學在譏笑,這位學生頓時有些難堪,想坐下去,我趕緊制止。)
師:很好!那你準備應該怎么做呢?生:嗯,(一下子來勁了):接著這位同學上黑板畫了圖,寫出自己度量的方法和自己的想法。
師:剛才閆家銜同學真的不錯,不但提出了新的方法,而且還給出了說理,我和全班同學都為你今天的表現感到非常高興(教室里響起一片掌聲)。要有勇氣展示自己,你今天的表現就非常非常地出色,你今后的表現一定會更出色。好,下面我就讓我們一同來總結一下菱形的證明方法。
在師生的共同研討下得出了這些方法。
師:今天的課程內容還有一項,那就是請閆家銜同學談談這堂課的感想。
生:??以前我不敢發言,我怕說的`不對會被同學們笑話,而今天的他的方法恰好是我前幾天才預習過的,所以一下子??我今天才發現不是這樣??我今后還會努力發言的??
【理念反思】:從這一個學生的舉手發言到說得頭頭是道的“意外”中,我明白了:學生需要一個能充分展示自我的自由空間,作為老師,我們需要給學生一個自由的民主的氛圍,能充分培養學生的自信,使“學困生”也能產生發言的欲望,也能對問題暢所欲言,教師還應能及時捕捉到這一閃光點,給每一位學生都有展示的機會。也就是說要使學生全部積極參與教學,因為它集中體現了現代課程理念:活動、合作、自由、民主、創新。
1、活動、合作是現代課程中的新的理念,只有參與,才能合作創新。
2、民主是現代課程中的重要理念。民主最直接的體現是在課程實施中學生能夠平等地參與。沒有主動參與,只有被動接受,就沒有民主可言。相反,如果沒有民主,學生的參與
就不是主動性參與,而是被動的、消極的參與。
3、在提問時,應設計開放性的問題,如:“請你幫助設計一下,有幾種方案等問題?這樣才沒有限制學生的思維,給學生創設一個自由的空間,學生在這個空間中可以按自己的方式展開想象,才能暢所欲言。
4、在課堂上,老師應不只關注“優等生”,而應平等地對待每一個學生,讓學困生”和“學優生”同時享有尊嚴和擁有一份自信。特別是發現到一個學困生在舉了手時,應及時給“學困生”展示的機會,讓他們發言,學生在發言中,雖然有時不能把問題完全解決,老師也要充分的肯定這個學生的成績和能夠大膽發言的勇氣。
初中數學教案14
問題描述:
初中數學教學案例
初中的,隨便那個年級.20xx字.案例和反思
1個回答 分類:數學 20xx-11-30
問題解答:
我來補答
2.3 平行線的性質
一、教材分析:
本節課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節 平行線的性質,它是平行線及直線平行的繼續,是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.
二、教學目標:
知識與技能:掌握平行線的性質,能應用性質解決相關問題.
數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神.
情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.
三、教學重、難點:
重點:平行線的性質
難點:“性質1”的探究過程
四、教學方法:
“引導發現法”與“動像探索法”
五、教具、學具:
教具:多媒體課件
學具:三角板、量角器.
六、教學媒體:大屏幕、實物投影
七、教學過程:
(一)創設情境,設疑激思:
1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
引出課題——平行線的性質.
(二)數形結合,探究性質
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數
數量關系
學生活動:畫圖——度量——填表——猜想
結論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?
學生:探究、討論,最后得出結論:仍然成立.
2.教師用《幾何畫板》課件驗證猜想
3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
(三)引申思考,培養創新
問題三:請判斷內錯角、同旁內角各有什么關系?
學生活動:獨立探究——小組討論——成果展示.
教師活動:引導學生說理.
因為a‖b 因為a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
語言敘述:
性質2 兩條直線被第三條直線所截,內錯角相等.
(兩直線平行,內錯角相等)
性質3 兩條直線被第三條直線所截,同旁內角互補.
(兩直線平行,同旁內角互補)
(四)實際應用,優勢互補
1.(搶答)
(1)如圖,平行線AB、CD被直線AE所截
①若∠1 = 110°,則∠2 = °.理由:.
②若∠1 = 110°,則∠3 = °.理由:.
③若∠1 = 110°,則∠4 = °.理由:.
(2)如圖,由AB‖CD,可得( )
(A)∠1=∠2 (B)∠2=∠3
(C)∠1=∠4 (D)∠3=∠4
(3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
(A) 180°(B)270° (C)360° (D)540°
(4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2= .
學生提問,并找出回答問題的同學.
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(小結)
1.平行線的性質1、2、3;
2.用“運動”的觀點觀察數學問題;
3.用數形結合的方法來解決問題.
(六)作業 第69頁 2、4、7.
八、教學反思:
①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發現結論后,利用幾何畫板直觀地、動態地展示同位角的關系,激發學生自覺地探究數學問題,體驗發現的樂趣.
②學的'轉變:學生的角色從學會轉變為會學.本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.
③課堂氛圍的轉變:整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值.
初中數學教案15
教學目標
1.知識與技能
能運用運算律探究去括號法則,并且利用去括號法則將整式化簡.
2.過程與方法
經歷類比帶有括號的有理數的運算,發現去括號時的符號變化的規律,歸納出去括號法則,培養學生觀察、分析、歸納能力.
3.情感態度與價值觀
培養學生主動探究、合作交流的意識,嚴謹治學的學習態度.
重、難點與關鍵
1.重點:去括號法則,準確應用法則將整式化簡.
2.難點:括號前面是“-”號去括號時,括號內各項變號容易產生錯誤.
3.關鍵:準確理解去括號法則.
教具準備
投影儀.
教學過程
一、新授
利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?
現在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為
100t+120(t-0.5)千米①
凍土地段與非凍土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都帶有括號,它們應如何化簡?
思路點撥:教師引導,啟發學生類比數的運算,利用分配律.學生練習、交流后,教師歸納:
利用分配律,可以去括號,合并同類項,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我們知道,化簡帶有括號的整式,首先應先去括號.
上面兩式去括號部分變形分別為:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比較③、④兩式,你能發現去括號時符號變化的規律嗎?
思路點撥:鼓勵學生通過觀察,試用自己的語言敘述去括號法則,然后教師板書(或用屏幕)展示:
如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;
如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反.
特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).
利用分配律,可以將式子中的括號去掉,得:
+(x-3)=x-3(括號沒了,括號內的每一項都沒有變號)
-(x-3)=-x+3(括號沒了,括號內的每一項都改變了符號)
去括號規律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;另外,括號內原有幾項去掉括號后仍有幾項.
二、范例學習
例1.化簡下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路點撥:講解時,先讓學生判定是哪種類型的去括號,去括號后,要不要變號,括號內的.每一項原來是什么符號?去括號時,要同時去掉括號前的符號.為了防止錯誤,題(2)中-3(a2-2b),先把3乘到括號內,然后再去括號.
解答過程按課本,可由學生口述,教師板書.
例2.兩船從同一港口同時出發反向而行,甲船順水,乙船逆水,兩船在靜水中的速度都是50千米/時,水流速度是a千米/時.
(1)2小時后兩船相距多遠?
(2)2小時后甲船比乙船多航行多少千米?
教師操作投影儀,展示例2,學生思考、小組交流,尋求解答思路.
思路點撥:根據船順水航行的速度=船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時,乙船速度為(50-a)千米/時,2小時后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時出發反向而行,所以兩船相距等于甲、乙兩船行程之和.
解答過程按課本.
去括號時強調:括號內每一項都要乘以2,括號前是負因數時,去掉括號后,括號內每一項都要變號.為了防止出錯,可以先用分配律將數字2與括號內的各項相乘,然后再去括號,熟練后,再省去這一步,直接去括號.
三、鞏固練習
1.課本第68頁練習1、2題.
2.計算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路點撥:一般地,先去小括號,再去中括號.
四、課堂小結
去括號是代數式變形中的一種常用方法,去括號時,特別是括號前面是“-”號時,括號連同括號前面的“-”號去掉,括號里的各項都改變符號.去括號規律可以簡單記為“-”變“+”不變,要變全都變.當括號前帶有數字因數時,這個數字要乘以括號內的每一項,切勿漏乘某些項.
五、作業布置
1.課本第71頁習題2.2第2、3、5、8題.
2.選用課時作業設計.
【初中數學教案】相關文章:
初中數學教案12-22
初中數學教案04-22
初中數學教案最新08-23
關于初中數學教案10-11
【推薦】初中數學教案12-22
初中數學教案【薦】12-30
初中數學教案模板08-10
【熱門】初中數學教案12-21
初中數學教案【推薦】12-21
初中數學教案【熱】12-21