- 相關推薦
橢圓知識點總結
在平平淡淡的學習中,很多人都經常追著老師們要知識點吧,知識點也不一定都是文字,數學的知識點除了定義,同樣重要的公式也可以理解為知識點。掌握知識點有助于大家更好的學習。下面是小編收集整理的橢圓知識點總結,供大家參考借鑒,希望可以幫助到有需要的朋友。
橢圓知識點總結 1
⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件。
⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用。
⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用。
⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用。
⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用。
⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用。
⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系。
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用。
⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用。
⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布。
⑿導數:導數的概念、求導、導數的應用。
⒀復數:復數的概念與運算。
橢圓知識點總結 2
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2—2accosB注:角B是邊a和邊c的夾角
圓的標準方程(x—a)2+(y—b)2=r2注:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0
拋物線標準方程y2=2pxy2=—2pxx2=2pyx2=—2py
直棱柱側面積S=c*h斜棱柱側面積S=c*h
正棱錐側面積S=1/2c*h正棱臺側面積S=1/2(c+c)h
圓臺側面積S=1/2(c+c)l=pi(R+r)l球的表面積S=4pi*r2
圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l
弧長公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=SL注:其中,S是直截面面積,L是側棱長
柱體體積公式V=s*h圓柱體V=p*r2h
乘法與因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b
|a—b|≥|a|—|b|—|a|≤a≤|a|
一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a
根與系數的關系X1+X2=—b/aX1*X2=c/a注:韋達定理
判別式
b2—4ac=0注:方程有兩個相等的實根
b2—4ac>0注:方程有兩個不等的實根
b2—4ac<0注:方程沒有實根,有共軛復數根
橢圓知識點總結 3
兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosA
cos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)
倍角公式
tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctga
cos2a=cos2a—sin2a=2cos2a—1=1—2sin2a
半角公式
sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)
tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)
2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos(A+B)—cos(A—B)
sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB
橢圓知識點總結 4
橢圓知識點總結
1.橢圓的概念
在平面內到兩定點F1、F2的距離的和等于常數(大于|F1F2|)的點的軌跡(或集合)叫橢圓.這兩定點叫做橢圓的焦點,兩焦點間的距離叫做焦距.
集合P={M||MF1|+|MF2|=2a}|F1F2|=2c,其中a>0,c>0,且a,c為常數:
(1)若a>c,則集合P為橢圓;
(2)若a=c,則集合P為線段;
(3)若a
2.橢圓的標準方程和幾何性質
一條規律
橢圓焦點位置與x2,y2系數間的關系:
兩種方法
(1)定義法:根據橢圓定義,確定a2、b2的值,再結合焦點位置,直接寫出橢圓方程.
(2)待定系數法:根據橢圓焦點是在x軸還是y軸上,設出相應形式的標準方程,然后根據條件確定關于a、b、c的方程組,解出a2、b2,從而寫出橢圓的標準方程.
三種技巧
(1)橢圓上任意一點M到焦點F的所有距離中,長軸端點到焦點的距離分別為最大距離和最小距離,且最大距離為a+c,最小距離為a-c.
(2)求橢圓離心率e時,只要求出a,b,c的一個齊次方程,再結合b2=a2-c2就可求得e(0
(3)求橢圓方程時,常用待定系數法,但首先要判斷是否為標準方程,判斷的依據是:
①中心是否在原點;
②對稱軸是否為坐標軸.
橢圓方程的第一定義:
⑴①橢圓的標準方程:
i. 中心在原點,焦點在x軸上:. ii. 中心在原點,焦點在軸上:.
②一般方程:.
③橢圓的標準參數方程:的參數方程為(一象限應是屬于).
⑵①頂點:或.②軸:對稱軸:x軸,軸;長軸長,短軸長.③焦點:或.④焦距:.⑤準線:或.⑥離心率:.⑦焦點半徑:
i. 設為橢圓上的一點,為左、右焦點,則
由橢圓方程的第二定義可以推出.
ii.設為橢圓上的一點,為上、下焦點,則
由橢圓方程的第二定義可以推出.
由橢圓第二定義可知:歸結起來為“左加右減”.
注意:橢圓參數方程的推導:得方程的軌跡為橢圓.
⑧通徑:垂直于x軸且過焦點的弦叫做通經。坐標:和
⑶共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0的參數,的離心率也是 我們稱此方程為共離心率的橢圓系方程.
(4)若P是橢圓:上的點.為焦點,若,則的面積為(用余弦定理與可得). 若是雙曲線,則面積為.
橢圓知識點總結 5
知識點一橢圓的定義
平面內到兩個定點的距離之和等于常數(大于)的點的集合叫做橢圓。兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距。
根據橢圓的定義可知:橢圓上的點M滿足集合,且都為常數。
當即時,集合P為橢圓。
當即時,集合P為線段。
當即時,集合P為空集。
知識點二橢圓的標準方程
(1)、焦點在軸上時,焦點為,焦點。
(2)、焦點在軸上時,焦點為,焦點。
知識點三橢圓方程的一般式
這種形式的方程在課本中雖然沒有明確給出,但在應用中有時比較方便,在此提供出來,作為參考:
(其中為同號且不為零的常數,),它包含焦點在軸或軸上兩種情形。方程可變形為。
當時,橢圓的焦點在軸上;當時,橢圓的焦點在軸上。
一般式,通常也設為,應特別注意均大于0,標準方程為。
知識點四橢圓標準方程的求法
1.定義法
橢圓標準方程可由定義直接求得,這是求橢圓方程中很重要的方法之一,當問題是以實際問題給出時,一定要注意使實際問題有意義,因此要恰當地表示橢圓的范圍。
例1、在△ABC中,A、B、C所對三邊分別為,且B(-1,0)C(1,0),求滿足,且成等差數列時,頂點A的曲線方程。
變式練習1.在△ABC中,點B(-6,0)、C(0,8),且成等差數列。
(1)求證:頂點A在一個橢圓上運動。
(2)指出這個橢圓的焦點坐標以及焦距。
2.待定系數法
首先確定標準方程的類型,并將其用有關參數表示出來,然后結合問題的條件,建立參數滿足的等式,求得的值,再代入所設方程,即一定性,二定量,最后寫方程。
例2、已知橢圓的中心在原點,且經過點P(3,0),=3b,求橢圓的標準方程。
例3、已知橢圓的中心在原點,以坐標軸為對稱軸,且經過兩點,求橢圓方程。
變式練習2.求適合下列條件的橢圓的方程;
(1)兩個焦點分別是(-3,0),(3,0)且經過點(5,0).
(2)兩焦點在坐標軸上,兩焦點的中點為坐標原點,焦距為8,橢圓上一點到兩焦點的距離之和為12.
3.已知橢圓經過點和點,求橢圓的標準方程。
4.求中心在原點,焦點在坐標軸上,且經過兩點的橢圓標準方程。
知識點五共焦點的橢圓方程的求解
一般地,與橢圓共焦點的橢圓可設其方程為。
例4、過點(-3,2)且與有相同焦點的橢圓的方程為()
A.B.C.D.
變式練習5.求經過點(2,-3)且橢圓有共同焦點的橢圓方程。
知識點六與橢圓有關的軌跡問題的求解方法
與橢圓有關的軌跡方程的求解是一種很重要的題型,教材中的例題就是利用代入求球軌。跡,其基本思路是設出軌跡上一點和已知曲線上一點,建立其關系,再代入。
例5、已知圓,從這個圓上任意一點向軸作垂線段,點在上,并且,求點的軌跡。
知識點七與弦的中點有關問題的求解方法
直線與橢圓相交于兩點、,稱線段為橢圓的相交弦。與這個弦中點有點的軌跡問題是一類綜合性很強的題目,因此解此類問題必須選擇一個合理的方法,如“設而不求”法,其主要特點是巧代線段的斜率。其方程具體是:設直線與橢圓相交于兩點,坐標分別為、,線段的中點為,則有
①式-②式,得,即
∴
通常將此方程用于求弦中點的軌跡方程。
例6.已知:橢圓,求:
(1)以P(2,-1)為中點的弦所在直線的方程;
(2)斜率為2的相交弦中點的軌跡方程;
(3)過Q(8,2)的直線被橢圓截得的弦中點的軌跡方程。
第二部分:鞏固練習
1.設為橢圓的焦點,P為橢圓上一點,則的周長是()
A.16B.8C.D.無法確定
2.橢圓的兩個焦點之間的距離為()
A.12B.4C.3D.2
3.橢圓的一個焦點是(0,2),那么等于()
A.-1B.1C.D.-
4.已知橢圓的焦點是,P是橢圓上的一個動點,如果延長到,使得,那么動點的軌跡是()
A.圓B.橢圓C.雙曲線的一支D.拋物線
5.已知橢圓的焦點在軸上,則的取值范圍是__________.
6.橢圓的焦點坐標是___________.
7.橢圓的焦距為2,則正數的值____________.
【橢圓知識點總結】相關文章:
《橢圓》數學教學反思02-12
橢圓的第二定義05-14
橢圓形教案04-17
橢圓標準方程教案06-22
橢圓形教案04-17
橢圓形教案04-17
橢圓形教案04-17
橢圓形教案04-17
橢圓形教案04-17
橢圓形教案04-17